Topology: relevant or irrelevant?

Michael Pinsker

Technische Universität Wien / Univerzita Karlova

Funded by Austrian Science Fund (FWF) grant P32337 and GAČR grant 18-20123S

57th Summer School on General Algebra and Ordered Sets (SSAOS) Karolinka 2019

	nol	OCUV	
10	υu	iuu v	

Topology: relevant or irrelevant?

Depends on:

- Topology
- What for?

We only consider one particular topology on the functions of an algebra / clone:

The pointwise convergence topology.

"What for?" varies.

- Part I: Global identities
- Part II: Local identities
- Part III: Topology is irrelevant
- Part IV: Topology is relevant

Topology ?

I: Global identities

Identities

Let $\mathbf{A} = (A; (f_i)_{i \in I})$ be an algebra.

Clo(A) ... clone of all term functions of A

(= composites of fundamental operations of **A** and projections).

Universal algebra:

Identities of \mathbf{A} / Clo(\mathbf{A}) \Leftrightarrow structure / properties of \mathbf{A} / Clo(\mathbf{A}).

Identities Σ_A of A: All true statements of the form

$$\forall x_1,\ldots,x_n \ t(x_1,\ldots,x_n) = s(x_1,\ldots,x_n)$$

where s, t are abstract terms over the language for $Clo(\mathbf{A})$. Depends only on $Clo(\mathbf{A})$.

We write

$$t(x_1,\ldots,x_n)\approx s(x_1,\ldots,x_n)$$
.

Example, HSP

Example: Let $\mathbf{G} = (G; +, -)$ be a group.

Let $m \in \text{Clo}(\mathbf{G})$ be the function given by $(x, y, z) \mapsto x + ((-y) + z)$. Then $\Sigma_{\mathbf{G}}$ contains (for example):

- $\blacksquare m(x, y, z) \approx x + ((-y) + z)$
- $\blacksquare m(x,x,y) \approx y$
- $\blacksquare m(y, x, x) \approx m(x, x, y)$

 $\Sigma_A \Leftrightarrow$ structure / properties of **A**. Which properties?

- Independent of the fundamental operations of A / depend only on Clo(A).
- Closed under H, S, P / properties of the *variety* generated by **A**.

 $\mathsf{HSP}(\mathbf{A})\ldots$ variety of $\mathbf{A}\ldots$ all algebras obtained by taking

- (H) factors by congruence relations (aka homomorphic images);
- (S) subalgebras;
- (P) powers.

Birkhoff's theorem

H, S, P can be applied to the *term clone* $Clo(\mathbf{A})$ of **A**: can be viewed as algebra (A; $Clo(\mathbf{A})$).

Function clone A: set of finitary functions on a fixed domain A which

- contains all projections $\pi_i^n(x_1, \ldots, x_n) \approx x_i$;
- is closed under composition.

Every function clone is the term clone of an algebra.

Identities $\Sigma_{\mathcal{A}} \iff$ structure / properties of \mathcal{A} .

Theorem (Birkhoff 1935)

Let \mathcal{A}, \mathcal{B} be function clones. TFAE:

■ $\mathcal{B} \in \mathsf{EHSP}(\mathcal{A})$, i.e., $\mathsf{HSP}(\mathcal{A})$ contains a function clone $\subseteq \mathcal{B}$;

• $\Sigma_{\mathcal{A}}$ " \subseteq " $\Sigma_{\mathcal{B}}$, i.e., $\exists \phi : \mathcal{A} \to \mathcal{B}$ preserving identities.

We write $\mathcal{A} \to \mathcal{B}$, or $\Sigma_{\mathcal{A}} \leq \Sigma_{\mathcal{B}}$. ϕ is called a *clone homomorphism*.

Mal'cev conditions

- Properties invariant under EHSP = properties invariant under existence of clone homomorphisms.
- More identities \Rightarrow more such properties.
- Characterized by *existence* of functions satisfying identities.

Strong Mal'cev condition:

Set Σ of identities over some abstract functional signature σ .

A function clone \mathcal{A} satisfies Σ (we write $\Sigma \leq \Sigma_{\mathcal{A}}$) : $\leftrightarrow \exists \phi \colon \sigma \to \mathcal{A}$ making all Σ true.

Example: Groups satisfy $q(x, x, y) \approx q(y, x, x) \approx y$.

Mal'cev condition: $\bigvee_{n>1} \Sigma_n$, where each Σ_n is strong.

Example: Having a near unanimity (nu) term of some arity:

$$n(x,\ldots,x,y) \approx n(x,\ldots,x,y,x) \cdots \approx n(y,x,\ldots,x) \approx x$$

Examples

Classically often related to congruences (= invariant equivalence relations of clones).

- \mathcal{A} satisfies $q(x, x, y) \approx q(y, x, x) \approx y \implies$ EHSP(\mathcal{A}) has permuting congruences (CP). (Mal'cev '54) **Example:** groups $(\mathcal{A}, +, -)$.
- A satisfies *near unanimity (nu)* equations ⇒
 EHSP(A) is congruence distributive (CD).
 Example: lattices. Equivalent to CD: *Jónsson '68 equations*.
- \mathcal{A} finitely related, EHSP(\mathcal{A}) congruence modular \Rightarrow The number of subalgebras of \mathcal{A}^n grows only exponentially with *n*. (*Barto '12*)
- A finitely related, EHSP(A) is CD ⇒
 A has a near unanimity function. (Barto '10)

Summary

Part I: Global identities

- Identities of algebras ⇔ structure of algebras
- Properties of clones, rather than algebras
- Clone homomorphisms characterize E, H, S, P
- Mal'cev conditions:
 - stipulate the existence of functions satisfying certain identities
 - characterize properties invariant under E, H, S, P

II: Local identities

Finite powers

Consider properties invariant under *finite powers*.

HSP^{fin}(A) ... *pseudovariety* generated by a function clone A.

Examples:

- Complexity of the Constraint Satisfaction Problems (CSPs): Certain computational problems encoded by function clones. Function clones in the pseudovariety encode easier problems.
- Things definable from a structure within classical logic. (relational structure $\mathbb{A} \leftrightarrow$ function clone \mathcal{A})
- Local properties.

Finite powers and local identities

Let \mathcal{A} be a function clone on domain A.

For any $F \subseteq {}^{\text{fin}}A$, let $\Sigma_{\mathcal{A}}^F$ be the identities which hold on F:

 $\forall x_1, \dots, x_n \in \mathbf{F} \ t(x_1, \dots, x_n) = \mathbf{s}(x_1, \dots, x_n)$ Then $\Sigma_{\mathcal{A}}^{\mathbf{F}} \supseteq \Sigma_{\mathcal{A}}$.

Now let \mathcal{B} be any function clone on a finite domain. Suppose that for all $F \subseteq^{\text{fin}} A$ we have $\Sigma_{\mathcal{A}}^F \nleq \Sigma_{\mathcal{B}}$.

Then $\mathcal{B} \notin \mathsf{EHSP}^{\mathsf{fin}}(\mathcal{A})!$

The converse also holds.

Topology ?

Michael Pinsker

Local vs. global identities

 $\mathcal{A} \to \mathcal{B}$ meant: $\exists \phi \colon \mathcal{A} \to \mathcal{B}$ preserving $\Sigma_{\mathcal{A}}$ (clone homomorphism). Now we want: $\exists \phi \colon \mathcal{A} \to \mathcal{B}$ preserving *some* $\Sigma_{\mathcal{A}}^{F}$.

Example:

Let $\mathcal{A} := \operatorname{Clo}(\omega; (f_i)_{i \geq 1}).$

 $\Sigma_{\mathcal{A}}$ is *trivial*, i.e., satisfiable in any clone (by its projections). But every $\Sigma_{\mathcal{A}}^{\mathcal{F}}$ "contains" $g(x, y) \approx g(y, x) \implies$ non-trivial.

Topology ?

Michael Pinsker

The pointwise convergence topology

 $\begin{array}{l} A \dots & \text{discrete.} \\ A^{A^n} = \{f \colon A^n \to A\} \dots & \text{product topology} \\ \bigcup_{n \geq 1} A^{A^n} \dots & \text{sum space.} \\ \end{array}$ Function clone $\mathcal{A} \subseteq \bigcup_{n \geq 1} A^{A^n} \dots & \text{induced topology.} \\ n\text{-ary functions } (f_i)_{i \geq 1} & \text{converge to } n\text{-ary } f \leftrightarrow \\ f_i \upharpoonright_{F^n} = f \upharpoonright_{F^n} & \text{eventually, for all } F \subseteq^{\text{fin}} A. \end{array}$

Topology induced by metric / uniformity.

Theorem (Bodirsky + P. '11; Gehrke + P. '15)

Let \mathcal{A}, \mathcal{B} be function clones, where \mathcal{B} is finitely generated. TFAE:

 $\blacksquare \ \mathcal{B} \in \mathsf{EHSP}^{\mathsf{fin}}(\mathcal{A});$

$$\blacksquare \exists F \subseteq {}^{\mathsf{fin}} A \exists \phi \colon \mathcal{A} \to \mathcal{B} \quad (\phi \text{ preserves } \Sigma_{\mathcal{A}}^{\mathsf{F}});$$

 $\blacksquare \ \mathcal{A} \xrightarrow{uc} \mathcal{B}:$

 $\exists \phi \colon \mathcal{A} \to \mathcal{B}$ uniformly continuous clone homomorphism.

Topology is relevant

Previous example:

$$\begin{array}{c}
\omega_{1} \\
\downarrow_{1}(x,y) = x \\
\downarrow_{2}(x,y) = & \\
\downarrow_{2}(x,y) = & \\
\downarrow_{2}(x,y) = & \\
\downarrow_{2}(x,y) = & \\
\downarrow_{2}(y,x) \\
\downarrow_{2}(y,x) \\
\downarrow_{2}(y,x)
\end{array}$$

Let $\mathcal{A} := \operatorname{Clo}(\omega; (f_i)_{i \ge 1})$. $\Sigma_{\mathcal{A}}$ is *trivial*, but no $\Sigma_{\mathcal{A}}^F$ is trivial. Let \mathcal{P} be the clone consisting only of projections on $\{0, 1\}$. $\Sigma_{\mathcal{P}}$ is trivial, i.e., satisfiable in every clone.

$$\begin{array}{ll} \blacksquare \ \mathcal{A} \to \mathcal{P} & (\text{hence } \mathcal{P} \in \mathsf{HSP}(\mathcal{A})); \\ \blacksquare \ \mathcal{A} \not\xrightarrow{\mathcal{V}} \mathcal{P} & (\text{hence } \mathcal{P} \notin \mathsf{HSP}^{\mathsf{fin}}(\mathcal{A})) \end{array}$$

Topology is relevant!

Local closure

Topology: relevant or irrelevant?

- Local identities ⇒ global identities?
- EHSP^{fin} = EHSP?
- Clone homomorphism \implies u.c. clone homomorphism?

A clone \mathcal{A} is *closed / topologically closed / locally closed* : \leftrightarrow \mathcal{A} contains all functions which it can interpolate on all finite sets.

 \mathcal{A} closed $\leftrightarrow \mathcal{A} = \mathsf{Pol}(\mathbb{A})$ for some relational structure $\mathbb{A} = (A; (R_j)_{j \in J}).$

 $\mathsf{Pol}(\mathbb{A})$... polymorphism clone of \mathbb{A} : all homomorphisms from finite powers of \mathbb{A} into \mathbb{A} .

For non-closed clones, topology is relevant.

There exists a *closed* clone \mathcal{A} with $\mathcal{A} \to \mathcal{P}$ and $\mathcal{A} \not\xrightarrow{uc} \mathcal{P}$. (Barto + P. '17)

Topology ?

Compactness

- In closed clones, functions converge.
- When do local identities converge to global ones?
- A permutation group \mathcal{G} acting on a set *G* is *oligomorphic* : \leftrightarrow \mathcal{G} acts on G^n with finitely many orbits, for all $n \ge 1$.

A function clone \mathcal{A} is *oligomorphic* : \leftrightarrow

 $\ensuremath{\mathcal{A}}$ contains an oligomorphic permutation group.

Lemma (Hottet + P.)
Let
$$A$$
 be a closed oligomorphic clone, and E be a finite set of identities
 $\nabla F \subseteq fin A$ ($E \subseteq E_{A}^{F}$) $\implies E \subseteq E_{A}$

Reason:

For
$$f, g \in A$$
, set $f \sim g : \leftrightarrow f \in \overline{\{\alpha \circ g \mid \alpha \in \mathcal{G}\}}$
(where \mathcal{G} is the oligomorphic group in A).

Then
$$(\mathcal{A} \cap \mathcal{A}^{\mathcal{A}^n}) / \sim$$
 is compact for all $n \geq 1$.

Topology ?

Topology: relevant or irrelevant?

Open problem

Let $\mathcal A$ be a closed oligomorphic clone. TFAE?

•
$$\mathcal{A} \to \mathcal{P}$$
 (i.e., $\Sigma_{\mathcal{A}}$ is trivial);

•
$$\mathcal{A} \xrightarrow{uc} \mathcal{P}$$
 (i.e., $\Sigma_{\mathcal{A}}^{F}$ is trivial for some $F \subseteq {}^{fin}\mathcal{A}$).

Search for *weakest* non-trivial strong Mal'cev condition Σ , locally: $\mathcal{A} \xrightarrow{\mathcal{YC}} \mathcal{P} \implies \Sigma \leq \Sigma_{\mathcal{A}}^{F}$ for all $F \subseteq {}^{fin} \mathcal{A}$.

Related problem:

Is there a strong Mal'cev condition for non-triviality of finite clones? Is there Σ such that any finite A with non-trivial Σ_A satisfies Σ ? Recently: weakest condition *which depends on* |A| (for *cores*) (*Barto + Kozik*).

Irrelevance of topology \Leftrightarrow existence of strong Mal'cev conditions

Summary

Part I: Global identities

Part II: Local identities

- Local identities determine which finitely generated clones can be constructed using E, H, S, P^{fin}
- Characterized by the existence of uniformly continuous clone homomorphisms

Thank you!

	20	0.011	
10	DO	luuv	

Michael Pinsker

Topology: relevant or irrelevant?

Michael Pinsker

Technische Universität Wien / Univerzita Karlova

Funded by Austrian Science Fund (FWF) grant P32337 and GAČR grant 18-20123S

57th Summer School on General Algebra and Ordered Sets (SSAOS) Karolinka 2019

	nol	OCUV	
10	υu	iuu v	

What happened so far

Part I: Global identities

Part II: Local identities

- Local identities in a function clone determine which finite clones can be constructed using E, H, S, P^{fin}
- Characterized by the existence of uniformly continuous clone homomorphisms
- In closed oligomorphic clones:
 local identities ⇒ global identities

Inspires search for strong Mal'cev conditions

ω -categoricity

A countable relational structure \mathbb{A} is ω -categorical : \leftrightarrow \mathbb{A} first-order defines only finitely many *n*-ary relations, for all $n \ge 1$ (without parameters).

Theorem (Ryll-Nardzewski, Engeler, Svenonius 1959)

Let $\mathbb A$ be a countable structure. TFAE:

- A is ω -categorical;
- $Aut(\mathbb{A})$ (equivalently, $Pol(\mathbb{A})$) is oligomorphic.

Examples:

- $(\mathbb{Q}; <)$ is ω -categorical.
- (\mathbb{Z} ; <) is not ω -categorical.

High degree of symmetry.

Close to finite structures:

Finitely many tuples of every arity modulo $\text{Aut}(\mathbb{A}).$

Topology ?

III: Topology is irrelevant

pp-interpretations

HSP^{fin} on function clones

 \Leftrightarrow

interpretations on relational structures.

Let \mathbb{A},\mathbb{B} be relational structures.

 \mathbb{B} has a *first-order (fo) interpretation* in $\mathbb{A} : \leftrightarrow \mathbb{B}$ can be constructed by

- taking a power A^n for some finite $n \ge 1$;
- defining a subset $S \subseteq A^n$;
- defining an equivalence relation \sim on *S*;
- defining relations on the equivalence classes of ~.

Example: $(\mathbb{Q}; +, \cdot)$ has a fo-interpretation in $(\mathbb{Z}; +, \cdot)$.

An interpretation is *primitive positive (pp)* \leftrightarrow all used formulas are primitive positive, i.e., of the form $\exists x_1, \ldots, x_n \ R_1(\cdots) \land \cdots \land R_m(\cdots)$.

Topology ?

pp interpretations and HSP^{fin}

Theorem (Bodirsky + P. '11)

Let \mathbb{A} be ω -categorical, and let \mathbb{B} be finite. TFAE:

- \blacksquare \mathbb{B} has a pp interpretation in \mathbb{A} ;
- $Pol(\mathbb{B}) \in EHSP^{fin}(Pol(\mathbb{A}));$
- $\blacksquare \operatorname{Pol}(\mathbb{A}) \xrightarrow{uc} \operatorname{Pol}(\mathbb{B}).$

Remarks:

- $Pol(\mathbb{A}) \xrightarrow{uc} \mathcal{P} \Leftrightarrow all finite structures have a pp interpretation in \mathbb{A}.$
- Is topology relevant for this property? $\mathsf{Pol}(\mathbb{A}) \xrightarrow{uc} \mathcal{P} \Leftrightarrow \mathsf{Pol}(\mathbb{A}) \to \mathcal{P}$?

Constraint Satisfaction Problems (CSPs)

Let $\mathbb A$ be a relational structure.

 $\text{CSP}(\mathbb{A})...$ problem of deciding the primitive positive theory of $\mathbb{A}:$

Input: pp sentence $\varphi = \exists x_1, \dots, x_n \ R_1(\dots) \land \dots \land R_m(\dots)$. **Question:** Does φ hold in \mathbb{A} ?

Example:

- \mathbb{B} has a pp interpretation in $\mathbb{A} \implies \mathsf{CSP}(\mathbb{B})$ reduces to $\mathsf{CSP}(\mathbb{A})$.
- Hence: $Pol(\mathbb{A}) \xrightarrow{uc} \mathcal{P} \implies CSP(\mathbb{A})$ is NP-hard.
- A "finite reason" for NP-hardness.
- Not the only reason (but almost?)

pp interpretations with parameters

 $\mathbb{A}, \mathbb{B}...$ relational structures.

A pp-interprets B with parameters :↔ ∃ $n \ge 1$ ∃ $\bar{a} \in A^n$ (A, \bar{a}) pp interprets B.

 $Pol(\mathbb{A}, \bar{a}) \dots$ stabilizer of \bar{a} in $Pol(\mathbb{A})$.

A pp interprets all finite structures with parameters $\Leftrightarrow \exists \bar{a} \operatorname{Pol}(\mathbb{A}, \bar{a}) \xrightarrow{uc} \mathcal{P}.$

Question:

$$\exists \bar{a} \ \mathsf{Pol}(\mathbb{A}, \bar{a}) \xrightarrow{uc} \mathcal{P} \quad \Leftrightarrow \quad \exists \bar{a} \ \mathsf{Pol}(\mathbb{A}, \bar{a}) \rightarrow \mathcal{P} \quad ?$$

pp interpretations with parameters \neq complexity reductions: Need an additional assumption on A.

- T-	-		- 0
10	0101	OOV	
		- 37	

Mc cores

Let \mathbbm{A} be a relational structure.

 \mathbb{A} is a model-complete (mc) core : \leftrightarrow

 $\mathsf{Aut}(\mathbb{A})$ is dense in $\mathsf{End}(\mathbb{A}) \leftrightarrow$

all endomorphisms agree with an automorphism on every finite set \leftrightarrow the unary functions in Pol(A) are the closure of Aut(A).

Equivalent to local idempotency of the clone:

 $\forall F \subseteq {}^{\mathsf{fin}} A \ \forall f \in \mathsf{Pol}(\mathbb{A}) \ \exists \alpha \in \mathsf{Aut}(\mathbb{A}) \text{ such that } \alpha \circ f \upharpoonright_{F^n} \text{ is idempotent.}$

Theorem (Bodirsky '03)

Every ω -categorical structure is homomorphically equivalent to a (unique, ω -categorical) mc core.

- Homomorphically equivalent structures have equal CSPs.
- pp interpretations with parameters in ω -categorical mc cores \implies CSP reductions.

Topology ?

Topology is irrelevant

Theorem (Barto + P. '16)

Let \mathcal{A} be a closed oligomorphic, mc core. TFAE:

- $\blacksquare \forall \bar{a} (\mathcal{A}, \bar{a}) \not\xrightarrow{\mathsf{yc}} \mathcal{P};$
- $\blacksquare \forall \bar{a} (\mathcal{A}, \bar{a}) \not\rightarrow \mathcal{P};$
- A satisfies $u \circ s(x, y, x, z, y, z) \approx v \circ s(y, x, z, x, z, y)$.
- For finite idempotent A, non-triviality implies A satisfies $s(x, y, x, z, y, z) \approx s(y, x, z, x, z, y)$ (Siggers '11)
- Conjectured to be tractability criterion for a certain class of ω-categorical CSPs. (see talk of Antoine Mottet)
- Tractability criterion for finite CSPs (Bulatov, Zhuk '17)

Summary

Part I: Global identities

Part II: Local identities

Part III: Topology is irrelevant

- E, H, S, P^{fin} corresponds to pp interpretations
- pp interpretations ⇒ complexity reductions between CSPs
- pp interpretations with parameters ⇒ complexity reductions in mc cores
- ω-categorical structures are homomorphically equivalent to mc cores
- Topology is irrelevant for pp interpreting all finite structures with parameters (in an ω-categorical mc core)

IV: Topology is relevant

h1 identities

A height 1 (h1) identity is of the form

$$s(x_1,\ldots,x_n)\approx t(y_1,\ldots,y_n)$$
,

where *s*, *t* are functional symbols (not arbitrary terms!).

Many Mal'cev conditions consist of h1 identities:

 $\tilde{\Sigma}_{\mathcal{A}} \dots$ h1 identities of a function clone \mathcal{A} . $\tilde{\Sigma}_{\mathcal{A}} \subseteq \Sigma_{\mathcal{A}} \implies$ weaker algebraic structure on \mathcal{A} . $\mathcal{A} \dashrightarrow \mathcal{B} : \leftrightarrow \exists \phi \colon \mathcal{A} \rightarrow \mathcal{B}$ preserving h1 identities. $\phi \dots$ minion homomorphism.

The double shrink (R)

Let \mathcal{A} be a function clone, B be a set, $p: A \rightarrow B, q: A \rightarrow B$.

$$\{p \circ f(q(x_1),\ldots,q(x_n)) \mid f \in \mathcal{A}\}$$

is called a *reflexion* of A.

R(A) ... all reflexions of A. Generalizes H, S.

Theorem (Barto + Opršal + P. '16)

Let \mathbb{A}, \mathbb{B} be relational structures, where \mathbb{A} is ω -categorical and \mathcal{B} is finite. TFAE:

- $Pol(\mathbb{B}) \in ERP^{fin}(Pol(\mathbb{A}));$
- $\blacksquare \operatorname{Pol}(\mathbb{A}) \xrightarrow{\operatorname{uc}} \operatorname{Pol}(\mathbb{B}).$
- B can be obtained from A by homomorphic equivalence and pp interpretations.

Slow orbit growth

Let \mathbb{A} be a mc core.

$$\blacksquare \exists \bar{a} \ \mathsf{Pol}(\mathbb{A}, \bar{a}) \xrightarrow{uc} \mathcal{P} \implies \mathsf{CSP}(\mathbb{A}) \text{ is NP-hard.}$$

 $\blacksquare \operatorname{Pol}(\mathbb{A}) \xrightarrow{\operatorname{uc}} \mathcal{P} \implies \operatorname{CSP}(\mathbb{A}) \text{ is NP-hard.}$

■
$$Pol(\mathbb{A}) \xrightarrow{uc} \mathcal{P} \iff \exists \bar{a} Pol(\mathbb{A}, \bar{a}) \xrightarrow{uc} \mathcal{P}$$

when \mathbb{A} has less than double exponential orbit growth.
(*Barto* + Kompatscher + Olšák + Van Pham + P. '17)

Topology: relevant?

$$\mathsf{Pol}(\mathbb{A}) \xrightarrow{\mathsf{uc}} \mathcal{P} \quad \Leftrightarrow \quad \mathsf{Pol}(\mathbb{A}) \dashrightarrow \mathcal{P} \quad ?$$

Topology is relevant

Theorem (Bodirsky + Mottet + Olšák + Opršal + P. + Willard '19)

For all non-trivial height 1 conditions $\tilde{\Sigma}$ there exists a closed oligomorphic clone ${\cal A}$ such that

- $\blacksquare \mathcal{A} \not \dashrightarrow \mathcal{P};$
- \mathcal{A} does not satisfy Σ .

Theorem (Bodirsky + Mottet + Olšák + Opršal + P. + Willard '19)

There exists a closed oligomorphic clone $\mathcal A$ such that

- $\mathcal{A} \not\rightarrow^{uc} \mathcal{P}$ (i.e., \mathcal{A} satisfies non-trivial h1 identities locally);
- $\blacksquare \mathcal{A} \dashrightarrow \mathcal{P} \quad (i.e., the global h1 identities of \mathcal{A} are trivial).$
- The first example is in contrast with finite structures.
- It lies within the infinite CSP dichotomy conjecture.
- The second one does not.

Topology ?

Summary

- Part I: Global identities
- Part II: Local identities
- Part III: Topology is irrelevant
- Part IV: Topology is relevant
 - Height 1 identities characterize ERP / ERP^{fin}.
 - ERP^{fin} characterizes homomorphic equivalence + pp interpretations.
 - There is no weakest h1 Mal'cev condition for closed oligomorphic clones.
 - Topology is relevant for minion homomorphisms to projections.

V: Topology: relevant or irrelevant?

Open problems

Is there a non-trivial Σ satisfied by every non-trivial finite A?

$$\blacksquare \ \mathcal{A} \to \mathcal{P} \quad \Leftrightarrow \quad \mathcal{A} \xrightarrow{\mathsf{uc}} \mathcal{P}$$

for closed oligomorphic clones \mathcal{A} ?

$$\blacksquare \ \mathcal{A} \dashrightarrow \mathcal{P} \quad \Leftrightarrow \quad \mathcal{A} \stackrel{\mathsf{uc}}{\dashrightarrow} \mathcal{P}$$

for closed oligomorphic clones \mathcal{A} within the infinite CSP dichotomy conjecture?

Thank you!

	20	0.011	
10	DO	luuv	

Michael Pinsker