Homework Assignment 1 - Tensor products

Hopf algebras - Spring Semester 2018

Exercise 1-Tensor product

Consider a module $X \in \mathcal{M}_{R}$ and two-sided ideals $I, J \subset R$.
a) Show that $X \otimes_{R} R / I \simeq X / X I$ in $\mathcal{M}_{R / I}$.
b) Show that $R / I \otimes_{R} R / J \simeq R /(I+J)$ in \mathcal{M}_{R}.

Exercise 2-Tensor product of maps

a) Let $\iota: \mathbb{Z} /(2) \rightarrow \mathbb{Z} /(4)$ be the unique injective group homomorphism. Compute id $\otimes_{\mathbb{Z}} \iota$ that maps $\mathbb{Z} /(2) \otimes_{\mathbb{Z}} \mathbb{Z} /(2) \rightarrow \mathbb{Z} /(2) \otimes_{\mathbb{Z}} \mathbb{Z} /(4)$.
b) For two integers m, n, compute $\mathbb{Z} /(m) \otimes_{\mathbb{Z}} \mathbb{Z} /(n)$.
c) Compute, for an abelian group G and an integer n, the tensor $G \otimes_{\mathbb{Z}} \mathbb{Z} /(n)$.
d) An abelian group G is a torsion abelian group if for every element $g \in G$ there is a natural number n such that $n g=0$. Show that for any torsion group G we have $G \otimes_{\mathbb{Z}} \mathbb{Q}=0$.

Exercise 3 - Tensor product of maps

Let X, Y be vector spaces over k, and $U \subseteq X, V \subseteq Y$ be subspaces. Let $p_{U}: U \rightarrow X$ and $p_{V}: V \rightarrow Y$ be the canonical inclusions. Show that

$$
\operatorname{ker} p_{U} \otimes_{k} p_{V}=X \otimes_{k} V+U \otimes_{k} Y
$$

Exercise 4 - Examples

Find modules M, N over a ring R such that $M \otimes_{\mathbb{Z}} N \not 千 M \otimes_{R} N$ as \mathbb{Z}-modules.

Exercise 5-Dual spaces

Let X, Y be k-vector spaces
a) Show that the map $(x, f) \mapsto(y \mapsto f(y) x)$ defines a linear map from $X \times Y^{*}$, which gives rise to a linear map $\phi_{X, Y}: X \otimes_{k} Y^{*} \rightarrow \operatorname{Hom}_{k}(Y, X)$. Additionally, show that if either X or Y are finite dimensional, then $\phi_{X, Y}$ is an isomorphism.
b) Show that the map $(x, f) \mapsto f(x)$ defines a bilinear map from $X \times X^{*}$, which gives rise to a linear map $e_{X}: X \otimes_{k} X^{*} \rightarrow k$.
c) Define $\operatorname{Tr}_{X}=e_{X} \circ \phi_{X, X}^{-1}: \operatorname{End}_{k}(X) \rightarrow k$, for X finite dimensional. Show that if we take $F \in \operatorname{End}_{k}(X)$ and $G \in \operatorname{End}_{k}(Y)$ then

$$
\operatorname{Tr}_{X \otimes Y}(F \otimes G)=\operatorname{Tr}_{X}(F) \operatorname{Tr}_{Y}(G)
$$

Exercise 6 - Exact sequences

Given M, N left modules over a ring R, show that the functors $\operatorname{Hom}(-, M)$ and $\operatorname{Hom}(N,-)$ are both left exact. I.e. whenever $X \rightarrow Y \rightarrow Z \rightarrow 0$ and $0 \rightarrow X^{\prime} \rightarrow Y^{\prime} \rightarrow Z^{\prime}$ are exact sequences of left R-modules, then the following are exact:

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}_{R}(Z, M) \rightarrow \operatorname{Hom}_{R}(Y, M) \rightarrow \operatorname{Hom}_{R}(X, M), \\
& 0 \rightarrow \operatorname{Hom}_{R}\left(N, X^{\prime}\right) \rightarrow \operatorname{Hom}_{R}\left(N, Y^{\prime}\right) \rightarrow \operatorname{Hom}_{R}\left(N, Z^{\prime}\right) .
\end{aligned}
$$

