Homework Assignment 1 - Tensor products

Hopf algebras - Spring Semester 2018

Exercise 1 - Tensor product

Consider a module $X \in \mathcal{M}_R$ and two-sided ideals $I, J \subset R$.

- a) Show that $X \otimes_R R/I \simeq X/XI$ in $\mathcal{M}_{R/I}$.
- b) Show that $R/I \otimes_R R/J \simeq R/(I+J)$ in \mathcal{M}_R .

Exercise 2 - Tensor product of maps

- a) Let $\iota : \mathbb{Z}/(2) \to \mathbb{Z}/(4)$ be the unique injective group homomorphism. Compute id $\otimes_{\mathbb{Z}} \iota$ that maps $\mathbb{Z}/(2) \otimes_{\mathbb{Z}} \mathbb{Z}/(2) \to \mathbb{Z}/(2) \otimes_{\mathbb{Z}} \mathbb{Z}/(4)$.
- b) For two integers m, n, compute $\mathbb{Z}/(m) \otimes_{\mathbb{Z}} \mathbb{Z}/(n)$.
- c) Compute, for an abelian group G and an integer n, the tensor $G \otimes_{\mathbb{Z}} \mathbb{Z}/(n)$.
- d) An abelian group G is a torsion abelian group if for every element $g \in G$ there is a natural number n such that ng = 0. Show that for any torsion group G we have $G \otimes_{\mathbb{Z}} \mathbb{Q} = 0$.

Exercise 3 - Tensor product of maps

Let X, Y be vector spaces over k, and $U \subseteq X, V \subseteq Y$ be subspaces. Let $p_U : U \to X$ and $p_V : V \to Y$ be the canonical inclusions. Show that

$$\ker p_U \otimes_k p_V = X \otimes_k V + U \otimes_k Y.$$

Exercise 4 - Examples

Find modules M, N over a ring R such that $M \otimes_{\mathbb{Z}} N \not\simeq M \otimes_R N$ as \mathbb{Z} -modules.

Exercise 5 - Dual spaces

Let X, Y be k-vector spaces

a) Show that the map $(x, f) \mapsto (y \mapsto f(y)x)$ defines a linear map from $X \times Y^*$, which gives rise to a linear map $\phi_{X,Y} : X \otimes_k Y^* \to \operatorname{Hom}_k(Y,X)$. Additionally, show that if either X or Y are finite dimensional, then $\phi_{X,Y}$ is an isomorphism.

- b) Show that the map $(x, f) \mapsto f(x)$ defines a bilinear map from $X \times X^*$, which gives rise to a linear map $e_X : X \otimes_k X^* \to k$.
- c) Define $\operatorname{Tr}_X = e_X \circ \phi_{X,X}^{-1} : \operatorname{End}_k(X) \to k$, for X finite dimensional. Show that if we take $F \in \operatorname{End}_k(X)$ and $G \in \operatorname{End}_k(Y)$ then

$$\operatorname{Tr}_{X\otimes Y}(F\otimes G) = \operatorname{Tr}_X(F)\operatorname{Tr}_Y(G).$$

Exercise 6 - Exact sequences

Given M, N left modules over a ring R, show that the functors Hom(-, M) and Hom(N, -) are both left exact. I.e. whenever $X \to Y \to Z \to 0$ and $0 \to X' \to Y' \to Z'$ are exact sequences of left R-modules, then the following are exact:

 $0 \to \operatorname{Hom}_{R}(Z, M) \to \operatorname{Hom}_{R}(Y, M) \to \operatorname{Hom}_{R}(X, M),$ $0 \to \operatorname{Hom}_{R}(N, X') \to \operatorname{Hom}_{R}(N, Y') \to \operatorname{Hom}_{R}(N, Z').$