Homework Assignment 6

Hopf algebras - Spring Semester 2018

Exercise 1

Let H be a bialgebra.

- a) Show that H^{op} is a bialgebra. (Recall that for any algebra A we let A^{op} denote the algebra with $A^{\text{op}} := \{a^{\text{op}} \mid a \in A\}$ and $a^{\text{op}}b^{\text{op}} = (ba)^{\text{op}}$ for all $a^{\text{op}}, b^{\text{op}} \in A^{\text{op}}$.)
- b) Show that H^{cop} is a bialgebra. (Recall that for any coalgebra C we let C^{cop} denote the coalgebra with $C^{\text{cop}} := \{x^{\text{cop}} \mid x \in C\}$ and $\Delta_{C^{\text{cop}}}(x^{\text{cop}}) = x_2^{\text{cop}} \otimes x_1^{\text{cop}}$ for all $x^{\text{cop}} \in C^{\text{cop}}$.)
- c) Show that if H is a Hopf algebra then so is H^{opcop} .
- d) Show that if H is a Hopf algebra with a bijective antipode, then so are H^{op} and H^{cop} .

Exercise 2

Let H be a Hopf algebra and (A, δ) an H right comodule algebra. The elements of the subalgebra

$$B = \{a \in A \mid a_0 \otimes a_1 = a \otimes 1\}$$

are termed H-coinvariant. If the map

$$\operatorname{can}: A \otimes_B A \to A \otimes_B H, \quad x \otimes y \mapsto xy_0 \otimes y_1$$

is bijective, we say $B \subset A$ is an H Galois extension and A is H-Galois.

Now, let A be an H left module algebra. Recall that the smash product A#H is an H right comodule algebra via $id \otimes \Delta$. Show that $A \subset A#H$ is the subalgebra of H-coinvariant elements and that $A \subset A#H$ is an H Galois extension.

Exercise 3

Let $k \subset L$ be a Galois extension with Galois group $G = \operatorname{Aut}_k(L)$. Clearly G operates on L, making L a $k[G] = (k^G)^*$ left module algebra and hence a k^G right comodule algebra. Show that $k \subset L$ is a k^G Galois extension.

Exercise 4

Suppose that $\operatorname{char} k = p > 0$ and let $m, n \ge 1, \alpha, \beta \in k$. Show that

$$H = k < t \mid t^{p^{n+m}} = 0 >$$

is a commutative Hopf algebra with

$$\Delta(t) = t \otimes 1 + 1 \otimes t + \alpha t^{p^n} \otimes t^{p^m} + \beta t^{p^m} \otimes t^{p^n}.$$

Describe the affine algebraic group Sp(H).