Homework Assignment 1 solution - The tensor product

Hopf algebras - Spring Semester 2018

What follows are proposed solutions that are not too thorough. Where some necessary details are lacking, a bold will be used. The student is encourage to fill in the details autonomously when a claim in bold does not seem to follow naturally.¹

Exercise 1

Consider a module $X \in \mathcal{M}_R$ and two-sided ideals $I, J \subset R$.

- a) Show that $X \otimes_R R/I \simeq X/XI$ in $\mathcal{M}_{R/I}$.
- b) Show that $R/I \otimes_R R/J \simeq R/(I+J)$ in \mathcal{M}_R .

Sketch of proof of 1.a). We will construct two R-linear maps $\phi : X/XI \to X \otimes_R R/I$ and $\tilde{\psi} : X \otimes_R R/I \to X/XI$ that are each other inverses, which concludes the proof.

For the first map, take $\phi(x + XI) = x \otimes (1 + I)$, which is well defined (i.. does not depend on the choice of representative x) and R-linear, as one can easily show.

To construct $\tilde{\psi}$, recall the universal property for $X \otimes_R R/I$: For any middle linear map $\psi : X \times R/I \to M$ there exists a unique *R*-module morphism $\tilde{\psi}$ that makes the following commute:

$$\begin{array}{cccc} X \times R/I & \xrightarrow{\otimes} & X \otimes_R R/I \\ & & & & \downarrow^{\exists ! \tilde{\psi}} \\ & & & & M \end{array} \tag{1}$$

Choose M = X/XI and $\psi = ((x, r+I) \mapsto xr+I)$. After we show that **the map is well defined** and **middle linear**, we obtain an *R*-linear map $\tilde{\psi} : X \otimes_R R/I$.

Remains only to observe that $\psi \circ \phi = id$, which is trivial, and $\phi \circ \psi = id$, which can be computed for the generators of $X \otimes_R R/I$ as follows:

$$\phi \circ \tilde{\psi}(x \otimes (r+I)) = \phi(xr+I) = xr \otimes (1+I) = x \otimes (r+I).$$

This concludes the isomorphism.

Sketch of proof of 1.b). This is very similar to 1.a), as we will find maps $\phi : R/(I+J) \to R/I \otimes_R R/J$ and $\tilde{\psi} : R/I \otimes_R R/J \to R/(I+J)$ that are *R*-linear and inverse of each other.

¹If typos or incorrections are found please write to *raul.penaquiao@math.uzh.ch*

We define $\phi = (x + I + J \mapsto x + I \otimes 1 + J)$. Note that this is well defined, because if $x = x' + x_i + x_j$, with $x_i \in I$ and $x_j \in J$, then we have

$$\phi(x+I+J) = x' + x_i + x_j + I \otimes 1 + J = (x'+I \otimes 1 + J) + (x_j + I \otimes 1 + J) = \phi(x'+I+J) + (1+I \otimes x_j + J) = \phi(x'+I+J) + 0,$$
(2)

so the definition of ϕ does not depend on the representative x. Additionally, this is R-linear.

To define ψ , let $\psi : R/I \times R/J$ be given by $(x_1 + I, x_2 + J) \mapsto x_1x_2 + I + J$. This is well defined and also is middle linear.

The fact that these maps are inverses of each other is easy to check. \Box

Exercise 2

- a) Let $\iota : \mathbb{Z}/(2) \to \mathbb{Z}/(4)$ be the unique injective group homomorphism. Compute id $\otimes_{\mathbb{Z}} \iota$ that maps $\mathbb{Z}/(2) \otimes_{\mathbb{Z}} \mathbb{Z}/(2) \to \mathbb{Z}/(2) \otimes_{\mathbb{Z}} \mathbb{Z}/(4)$.
- b) For two integers m, n, compute $\mathbb{Z}/(m) \otimes_{\mathbb{Z}} \mathbb{Z}/(n)$.
- c) Compute, for an abelian group G and an integer n, the tensor $G \otimes_{\mathbb{Z}} \mathbb{Z}/(n)$.
- d) An abelian group G is a torsion abelian group if for every element $g \in G$ there is a natural number n such that ng = 0. Show that for any torsion group G we have $G \otimes_{\mathbb{Z}} \mathbb{Q} = 0$.

Solutions of exercise 2.

- a) This is the zero map, as $\mathrm{id} \otimes_{\mathbb{Z}} \iota(\bar{1} \otimes \bar{1}) = \bar{1} \otimes \bar{2} = \bar{2} \otimes \bar{1} = 0.$
- b) This is $\mathbb{Z}/(d)$, where $d = \gcd(m, n)$. Note exercise 1.b).
- c) This is G/nG. Note exercise 1.a).
- d) Any generator is the zero element, as $g \otimes q = g \otimes n \frac{q}{n} = gn \otimes \frac{q}{n} = 0$.

Exercise 3

Let X, Y be vector spaces over k, and $U \subseteq X, V \subseteq Y$ be subspaces. Let $p_U : U \to X$ and $p_V : V \to Y$ be the canonical inclusions.

Show that

$$\ker p_U \otimes_k p_V = X \otimes_k V + U \otimes_k Y.$$

Sketch of proof. Let $Z = X \otimes_k V + U \otimes_k Y$. Note that $p_U \otimes_R p_V$ is surjective, so it suffices to show that the map $\overline{p_U \otimes_R p_V} : (X \otimes_R Y)/Z \to X/U \otimes_R Y/V$ is well defined and injective.

The fact that it is well defined is trivial, since we can observe that $Z \subset \ker p_U \otimes_R p_V$. To show that it is injective, it is enough to show that $\tilde{\phi}$ defined via the middle linear map

$$\phi: (x+U, y+V) \mapsto x \otimes y + Z,$$

is the left inverse of $\overline{p_U \otimes_R p_V}$, i.e. $\phi \circ \overline{p_U \otimes p_V} = \text{id.}$

It immediately follows that $\overline{p_U \otimes p_V}$ is injective, as desired.

Exercise 4

Find modules M, N over a ring R such that $M \otimes_{\mathbb{Z}} N \not\simeq M \otimes_R N$ as \mathbb{Z} -modules.

Proof. Take $R = \mathbb{Z}[i]$, the ring of Gaussian integers, and take M = N = R. Clearly $M \otimes_{\mathbb{Z}} N \simeq \mathbb{Z}^2 \otimes_{\mathbb{Z}} \mathbb{Z}^2 \simeq \mathbb{Z}^4$.

However $M \otimes_R N \simeq R$ as *R*-modules, so $M \otimes_R N \simeq \mathbb{Z}^2$ as \mathbb{Z} -modules.

Exercise 5

Let X, Y be k-vector spaces

- a) Show that the map $(x, f) \mapsto (y \mapsto f(y)x)$ defines a linear map from $X \times Y^*$, which gives rise to a linear map $\phi_{X,Y} : X \otimes_k Y^* \to \operatorname{Hom}_k(Y,X)$. Additionally, show that if either X or Y are finite dimensional, then $\phi_{X,Y}$ is an isomorphism.
- b) Show that the map $(x, f) \mapsto f(x)$ defines a bilinear map from $X \times X^*$, which gives rise to a linear map $e_X : X \otimes_k X^* \to k$.
- c) Define $\operatorname{Tr}_X = e_X \circ \phi_{X,X}^{-1}$: $\operatorname{End}_k(X) \to k$, for X finite dimensional. Show that if we take $F \in \operatorname{End}_k(X)$ and $G \in \operatorname{End}_k(Y)$ then

$$\operatorname{Tr}_{X\otimes Y}(F\otimes G) = \operatorname{Tr}_X(F)\operatorname{Tr}_Y(G)$$

Sketch of a). That the map $\phi = (x, f) \mapsto (y \mapsto f(y)x)$ satisfies the middle linear property implies that it lifts to an k-linear map $\tilde{\phi} : X \otimes_R Y^* \to \operatorname{Hom}_R(Y, X)$.

This map, once chosen a basis $\{x_I\}_{i \in I}$ of X, can be easily seen to be the following composition

where ι is the canonical inclusion. If X is finite dimensional, then $f \mapsto (x_i^* \circ f)_{i \in I}$ is an inverse of ι . If Y is finite dimensional we can see that ι is also invertible. In both cases, we conclude that $\tilde{\phi}$ is an isomorphism.

In b), we need only to check the middle linear property of the given map and recall the universal property.

Sketch of c). The following diagram commutes for X, Y finite dimensional:

$$\operatorname{End}(X \otimes_{k} Y) \xrightarrow{\simeq} \operatorname{End}(X) \otimes_{k} \operatorname{End}(Y) \underset{\phi_{X} \otimes_{k} \phi_{Y}}{\longleftarrow} (X \otimes_{k} X^{*}) \otimes_{k} (Y \otimes_{k} Y^{*})$$

$$\uparrow^{\phi_{X} \otimes_{k} Y} \xrightarrow{\operatorname{Tr}_{X} \otimes_{k} Y} \qquad \downarrow^{\operatorname{Tr}_{X} \otimes_{k} \operatorname{Tr}_{Y}} \underset{e_{X} \otimes_{k} e_{Y}}{\longleftarrow} (4)$$

$$(X \otimes_{k} Y) \otimes_{k} (X \otimes_{k} Y)^{*} \xrightarrow{e_{X} \otimes_{k} Y} k \xleftarrow{e_{X} \otimes_{k} e_{Y}}$$

by simply checking that the lower triangle and the leftmost triangle commute by definition of Tr, whereas the pentagram commutes because by picking basis for X and Y, and the corresponding dual basis via $X^* \otimes_k Y^* \simeq (X \otimes_k Y)^*$, direct computations **imply directly the commutativity**. It follows that the inner triangle commutes, as envisaged. \Box

Exercise 6

Given M, N left modules over a ring R, show that the functors $\operatorname{Hom}(-, M)$ and $\operatorname{Hom}(N, -)$ are both left exact. I.e. whenever $X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \to 0$ and $0 \to X' \to Y' \to Z$ are exact sequences of left R-modules, then the following are exact:

$$0 \to \operatorname{Hom}_{R}(Z, M) \xrightarrow{\beta_{*}} \operatorname{Hom}_{R}(Y, M) \xrightarrow{\alpha_{*}} \operatorname{Hom}_{R}(X, M) ,$$
$$0 \to \operatorname{Hom}_{R}(N, X) \to \operatorname{Hom}_{R}(N, Y) \to \operatorname{Hom}_{R}(N, Z) .$$

Proof. For the first exactness, it suffices to show the following three properties:

- The composition relation $\alpha_* \circ \beta_* = 0$ holds, which is trivial.
- The map β_* is injective, which follows from the fact that if $\beta_*(f) = 0$ then $\beta \circ f = 0$, which implies that f = 0 because β is epimorphism.
- The arguably hardest part of this exercise, which is to show that there is no $f \in \ker \alpha_* \setminus \operatorname{im} \beta_*$, thereby showing, together with $\alpha_* \circ \beta_* = 0$, that $\ker \beta_* = \operatorname{im} \alpha_*$.

To show the last item, note that $\ker \beta = \operatorname{im} \alpha \subset \ker f$ so we can find $\overline{f} : Y / \ker \beta \to M$ that makes the following diagram commute:

$$\begin{array}{cccc} X & \xrightarrow{\alpha} & Y & \xrightarrow{\beta} & Z \\ & \searrow & & & & \downarrow_{f} & & & \downarrow_{\beta'} \\ & & & M & \xleftarrow{\bar{f}} & Y/\ker\beta \end{array} \tag{5}$$

where β' is the left inverse of the injective map $\bar{\beta} : Y/\ker\beta \to Z$. But $f = \beta_*(\bar{f} \circ \beta')$, contradicting the fact that $f \notin \operatorname{im} \beta_*$.

the second exactness follows similarly.