Homework Assignment 1 solution - The tensor product

Hopf algebras - Spring Semester 2018

What follows are proposed solutions that are not too thorough. Where some necessary details are lacking, a bold will be used. The student is encourage to fill in the details autonomously when a claim in bold does not seem to follow naturally. ${ }^{1}$

Exercise 1

Consider a module $X \in \mathcal{M}_{R}$ and two-sided ideals $I, J \subset R$.
a) Show that $X \otimes_{R} R / I \simeq X / X I$ in $\mathcal{M}_{R / I}$.
b) Show that $R / I \otimes_{R} R / J \simeq R /(I+J)$ in \mathcal{M}_{R}.

Sketch of proof of 1.a). We will construct two R-linear maps $\phi: X / X I \rightarrow X \otimes_{R} R / I$ and $\tilde{\psi}: X \otimes_{R} R / I \rightarrow X / X I$ that are each other inverses, which concludes the proof.

For the first map, take $\phi(x+X I)=x \otimes(1+I)$, which is well defined (i.. does not depend on the choice of representative x) and R-linear, as one can easily show.

To construct $\tilde{\psi}$, recall the universal property for $X \otimes_{R} R / I$: For any middle linear map $\psi: X \times R / I \rightarrow M$ there exists a unique R-module morphism $\tilde{\psi}$ that makes the following commute:

Choose $M=X / X I$ and $\psi=((x, r+I) \mapsto x r+I)$. After we show that the map is well defined and middle linear, we obtain an R-linear map $\tilde{\psi}: X \otimes_{R} R / I$.

Remains only to observe that $\tilde{\psi} \circ \phi=\mathrm{id}$, which is trivial, and $\phi \circ \tilde{\psi}=\mathrm{id}$, which can be computed for the generators of $X \otimes_{R} R / I$ as follows:

$$
\phi \circ \tilde{\psi}(x \otimes(r+I))=\phi(x r+I)=x r \otimes(1+I)=x \otimes(r+I) .
$$

This concludes the isomorphism.
Sketch of proof of 1.b). This is very similar to 1.a), as we will find maps $\phi: R /(I+J) \rightarrow$ $R / I \otimes_{R} R / J$ and $\tilde{\psi}: R / I \otimes_{R} R / J \rightarrow R /(I+J)$ that are R-linear and inverse of each other.

[^0]We define $\phi=(x+I+J \mapsto x+I \otimes 1+J)$. Note that this is well defined, because if $x=x^{\prime}+x_{i}+x_{j}$, with $x_{i} \in I$ and $x_{j} \in J$, then we have

$$
\begin{align*}
\phi(x+I+J) & =x^{\prime}+x_{i}+x_{j}+I \otimes 1+J=\left(x^{\prime}+I \otimes 1+J\right)+\left(x_{j}+I \otimes 1+J\right) \\
& =\phi\left(x^{\prime}+I+J\right)+\left(1+I \otimes x_{j}+J\right)=\phi\left(x^{\prime}+I+J\right)+0 \tag{2}
\end{align*}
$$

so the definition of ϕ does not depend on the representative x. Additionally, this is R-linear.
To define $\tilde{\psi}$, let $\psi: R / I \times R / J$ be given by $\left(x_{1}+I, x_{2}+J\right) \mapsto x_{1} x_{2}+I+J$. This is well defined and also is middle linear.

The fact that these maps are inverses of each other is easy to check.

Exercise 2

a) Let $\iota: \mathbb{Z} /(2) \rightarrow \mathbb{Z} /(4)$ be the unique injective group homomorphism. Compute id $\otimes_{\mathbb{Z}} \iota$ that maps $\mathbb{Z} /(2) \otimes_{\mathbb{Z}} \mathbb{Z} /(2) \rightarrow \mathbb{Z} /(2) \otimes_{\mathbb{Z}} \mathbb{Z} /(4)$.
b) For two integers m, n, compute $\mathbb{Z} /(m) \otimes_{\mathbb{Z}} \mathbb{Z} /(n)$.
c) Compute, for an abelian group G and an integer n, the tensor $G \otimes_{\mathbb{Z}} \mathbb{Z} /(n)$.
d) An abelian group G is a torsion abelian group if for every element $g \in G$ there is a natural number n such that $n g=0$. Show that for any torsion group G we have $G \otimes_{\mathbb{Z}} \mathbb{Q}=0$.

Solutions of exercise 2.
a) This is the zero map, as $\operatorname{id} \otimes_{\mathbb{Z}} \iota(\overline{1} \otimes \overline{1})=\overline{1} \otimes \overline{2}=\overline{2} \otimes \overline{1}=0$.
b) This is $\mathbb{Z} /(d)$, where $d=\operatorname{gcd}(m, n)$. Note exercise 1.b).
c) This is $G / n G$. Note exercise 1.a).
d) Any generator is the zero element, as $g \otimes q=g \otimes n \frac{q}{n}=g n \otimes \frac{q}{n}=0$.

Exercise 3

Let X, Y be vector spaces over k, and $U \subseteq X, V \subseteq Y$ be subspaces. Let $p_{U}: U \rightarrow X$ and $p_{V}: V \rightarrow Y$ be the canonical inclusions.

Show that

$$
\operatorname{ker} p_{U} \otimes_{k} p_{V}=X \otimes_{k} V+U \otimes_{k} Y
$$

Sketch of proof. Let $Z=X \otimes_{k} V+U \otimes_{k} Y$. Note that $p_{U} \otimes_{R} p_{V}$ is surjective, so it suffices to show that the map $\overline{p_{U} \otimes_{R} p_{V}}:\left(X \otimes_{R} Y\right) / Z \rightarrow X / U \otimes_{R} Y / V$ is well defined and injective.

The fact that it is well defined is trivial, since we can observe that $Z \subset \operatorname{ker} p_{U} \otimes_{R} p_{V}$. To show that it is injective, it is enough to show that $\tilde{\phi}$ defined via the middle linear map

$$
\phi:(x+U, y+V) \mapsto x \otimes y+Z
$$

is the left inverse of $\overline{p_{U} \otimes_{R} p_{V}}$, i.e. $\phi \circ \overline{p_{U} \otimes p_{V}}=\mathrm{id}$.
It immediately follows that $\overline{p_{U} \otimes p_{V}}$ is injective, as desired.

Exercise 4

Find modules M, N over a ring R such that $M \otimes_{\mathbb{Z}} N \not 千 M \otimes_{R} N$ as \mathbb{Z}-modules.
Proof. Take $R=\mathbb{Z}[i]$, the ring of Gaussian integers, and take $M=N=R$. Clearly $M \otimes_{\mathbb{Z}} N \simeq \mathbb{Z}^{2} \otimes_{\mathbb{Z}} \mathbb{Z}^{2} \simeq \mathbb{Z}^{4}$.

However $M \otimes_{R} N \simeq R$ as R-modules, so $M \otimes_{R} N \simeq \mathbb{Z}^{2}$ as \mathbb{Z}-modules.

Exercise 5

Let X, Y be k-vector spaces
a) Show that the map $(x, f) \mapsto(y \mapsto f(y) x)$ defines a linear map from $X \times Y^{*}$, which gives rise to a linear map $\phi_{X, Y}: X \otimes_{k} Y^{*} \rightarrow \operatorname{Hom}_{k}(Y, X)$. Additionally, show that if either X or Y are finite dimensional, then $\phi_{X, Y}$ is an isomorphism.
b) Show that the map $(x, f) \mapsto f(x)$ defines a bilinear map from $X \times X^{*}$, which gives rise to a linear map $e_{X}: X \otimes_{k} X^{*} \rightarrow k$.
c) Define $\operatorname{Tr}_{X}=e_{X} \circ \phi_{X, X}^{-1}: \operatorname{End}_{k}(X) \rightarrow k$, for X finite dimensional. Show that if we take $F \in \operatorname{End}_{k}(X)$ and $G \in \operatorname{End}_{k}(Y)$ then

$$
\operatorname{Tr}_{X \otimes Y}(F \otimes G)=\operatorname{Tr}_{X}(F) \operatorname{Tr}_{Y}(G)
$$

Sketch of $a)$. That the map $\phi=(x, f) \mapsto(y \mapsto f(y) x)$ satisfies the middle linear property implies that it lifts to an k-linear map $\tilde{\phi}: X \otimes_{R} Y^{*} \rightarrow \operatorname{Hom}_{R}(Y, X)$.

This map, once chosen a basis $\left\{x_{I}\right\}_{i \in I}$ of X, can be easily seen to be the following composition

where ι is the canonical inclusion. If X is finite dimensional, then $f \mapsto\left(x_{i}^{*} \circ f\right)_{i \in I}$ is an inverse of ι. If Y is finite dimensional we can see that ι is also invertible. In both cases, we conclude that $\tilde{\phi}$ is an isomorphism.

In b), we need only to check the middle linear property of the given map and recall the universal property.

Sketch of c). The following diagram commutes for X, Y finite dimensional:

by simply checking that the lower triangle and the leftmost triangle commute by definition of Tr, whereas the pentagram commutes because by picking basis for X and Y, and the corresponding dual basis via $X^{*} \otimes_{k} Y^{*} \simeq\left(X \otimes_{k} Y\right)^{*}$, direct computations imply directly the commutativity. It follows that the inner triangle commutes, as envisaged.

Exercise 6

Given M, N left modules over a ring R, show that the functors $\operatorname{Hom}(-, M)$ and $\operatorname{Hom}(N,-)$ are both left exact. I.e. whenever $X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z \rightarrow 0$ and $0 \rightarrow X^{\prime} \rightarrow Y^{\prime} \rightarrow Z$ are exact sequences of left R-modules, then the following are exact:

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{R}(Z, M) \xrightarrow{\beta_{*}} \operatorname{Hom}_{R}(Y, M) \xrightarrow{\alpha_{*}} \operatorname{Hom}_{R}(X, M), \\
0 & \rightarrow \operatorname{Hom}_{R}(N, X) \rightarrow \operatorname{Hom}_{R}(N, Y) \rightarrow \operatorname{Hom}_{R}(N, Z) .
\end{aligned}
$$

Proof. For the first exactness, it suffices to show the following three properties:

- The composition relation $\alpha_{*} \circ \beta_{*}=0$ holds, which is trivial.
- The map β_{*} is injective, which follows from the fact that if $\beta_{*}(f)=0$ then $\beta \circ f=0$, which implies that $f=0$ because β is epimorphism.
- The arguably hardest part of this exercise, which is to show that there is no $f \in$ $\operatorname{ker} \alpha_{*} \backslash \operatorname{im} \beta_{*}$, thereby showing, together with $\alpha_{*} \circ \beta_{*}=0$, that $\operatorname{ker} \beta_{*}=\operatorname{im} \alpha_{*}$.
To show the last item, note that $\operatorname{ker} \beta=\operatorname{im} \alpha \subset \operatorname{ker} f$ so we can find $\bar{f}: Y / \operatorname{ker} \beta \rightarrow M$ that makes the following diagram commute:

where β^{\prime} is the left inverse of the injective map $\bar{\beta}: Y / \operatorname{ker} \beta \rightarrow Z$.
But $f=\beta_{*}\left(\bar{f} \circ \beta^{\prime}\right)$, contradicting the fact that $f \notin \operatorname{im} \beta_{*}$.
the second exactness follows similarly.

[^0]: ${ }^{1}$ If typos or incorrections are found please write to raul.penaguiao@math.uzh.ch

