Homework Assignment 1 solution - The tensor product

Hopf algebras - Spring Semester 2018

What follows are proposed solutions that are not too thorough. Where some necessary
details are lacking, a bold will be used. The student is encourage to fill in the details
autonomously when a claim in bold does not seem to follow naturally.!

Exercise 1
Consider a module X € Mg and two-sided ideals I, J C R.

a) Show that X ®r R/I ~ X/XI in Mp;.
b) Show that R/I ®g R/J ~ R/(I +J) in M.

Sketch of proof of 1.a). We will construct two R-linear maps ¢ : X/XI — X ®g R/I and
Y : X @z R/I — X/X1I that are each other inverses, which concludes the proof.

For the first map, take ¢(x + XI) = 2 ® (1 + I), which is well defined (i.. does not
depend on the choice of representative z) and R-linear, as one can easily show.

To construct 1;, recall the universal property for X ®g R/I: For any middle linear map
¥ X x R/I — M there exists a unique R-module morphism zﬂ that makes the following
commute:

X xR/I -2 X @ R/I

a1y (1)
xﬂgtﬂ

Choose M = X/ X1 and ¢ = ((x,r+1) — xr+1I). After we show that the map is well
defined and middle linear, we obtain an R-linear map 1 : X ®p R/I.

Remains only to observe that 1; o ¢ = id, which is trivial, and ¢ o 1; = id, which can be
computed for the generators of X ®pg R/I as follows:

popx@(r+I))=¢ar+DN=ar@(1+ =z (+1I).
This concludes the isomorphism. ]

Sketch of proof of 1.b). This is very similar to 1.a), as we will find maps ¢ : R/(I + J) —
R/I®r R/J and ¢ : R/I ®@r R/J — R/(I + J) that are R-linear and inverse of each other.
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We define ¢ = (x+ 1+ J — z+1®1+ J). Note that this is well defined, because if
x =o'+ x; +x;, with ; € I and z; € J, then we have

dla+l+J)=a'+r,+;,+ 11+ T=@'+I14+J)+ (r;+ @1+ J) )
=@’ +I1+0)+(1+1@z;+J)=¢@ +1+J)+0,

so the definition of ¢ does not depend on the representative x. Additionally, this is R-linear.
To define v, let 1 : R/I x R/J be given by (14 1,29+ J) — x129+ I + J. This is well
defined and also is middle linear.
The fact that these maps are inverses of each other is easy to check. O

Exercise 2

a) Let v:Z/(2) — Z/(4) be the unique injective group homomorphism. Compute id @zt
that maps Z/(2) 7 Z/(2) — Z/(2) @z Z](4).

b) For two integers m, n, compute Z/(m) &z Z/(n).
c) Compute, for an abelian group G and an integer n, the tensor G ®z Z/(n).

d) An abelian group G is a torsion abelian group if for every element g € G there is
a natural number n such that ng = 0. Show that for any torsion group G we have

G®z,Q=0.
Solutions of exercise 2.
a) This is the zero map, as id®z(1®1)=1®2=2®1=0.
b) This is Z/(d), where d = ged(m,n). Note exercise 1.b).
c) This is G/nG. Note exercise 1.a).
)

d) Any generator is the zero element, as ¢ ® ¢ = g ® n% =gn® % =0.

Exercise 3

Let X,Y be vector spaces over k, and U C X, V C Y be subspaces. Let py : U — X and
py : V. — Y be the canonical inclusions.
Show that
keer®ka:X®kV—i—U®kY.

Sketch of proof. Let Z = X ®, V +U ®; Y. Note that py ®g py is surjective, so it suffices

to show that the map py @r py : (X ®rY)/Z — X/U @z Y/V is well defined and injective.

The fact that it is well defined is trivial, since we can observe that Z C kerpy Qg py.

To show that it is injective, it is enough to show that ¢ defined via the middle linear map
o:(x+Uy+V)—arxy+ 2,

is the left inverse of py ®r py, i.e. ¢ o py ® py = id.
It immediately follows that py ® py is injective, as desired. O
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Exercise 4
Find modules M, N over a ring R such that M ®z N %2 M ®r N as Z-modules.

Proof. Take R = Z[i], the ring of Gaussian integers, and take M = N = R. Clearly
M@ZNZZ2®ZZQZZ4.
However M ®r N ~ R as R-modules, so M ®@r N ~ Z? as Z-modules. O

Exercise 5

Let X,Y be k-vector spaces

a) Show that the map (z, f) — (y — f(y)x) defines a linear map from X x Y* which
gives rise to a linear map ¢xy : X ®; Y* — Homy (Y, X). Additionally, show that if
either X or Y are finite dimensional, then ¢y y is an isomorphism.

b) Show that the map (z, f) — f(x) defines a bilinear map from X x X*  which gives rise
to a linear map ex : X ®, X* — k.

¢) Define Try = ex o ¢x'y : Endp(X) — k, for X finite dimensional. Show that if we
take F' € Endy(X) and G € End,(Y') then

TI‘X®y(F X G) = Trx(F) Try(G) .
Sketch of a). That the map ¢ = (z, f) = (y +— f(y)z) satisfies the middle linear prop-
erty implies that it lifts to an k-linear map ¢ : X @z Y* — Hompg(Y, X).

This map, once chosen a basis {z;}ic; of X, can be easily seen to be the following
composition

X @ Y* —— (Bicihzi) @k Y* —— Dy (kr; @ Y*) —— @iy Hom(Y, ka;)

L 3
é e
HOH’I(Y’, @ielkxi)

where ¢ is the canonical inclusion. If X is finite dimensional, then f +— (2} o f);cs is an
inverse of ¢. If Y is finite dimensional we can see that ¢ is also invertible. In both cases,
we conclude that ¢ is an isomorphism. O]

In b), we need only to check the middle linear property of the given map and recall the
universal property.

Sketch of ¢). The following diagram commutes for X, Y finite dimensional:

End(X @ Y) —=— End(X) @ End(Y) g—— (X @ X*) @ (Y @4 V")

T¢X®kY Trxeyy l’l‘rx ®k Try (4)
ex®rey
(X @ Y) @ (X ®Y)"

eX®LY ’




by simply checking that the lower triangle and the leftmost triangle commute by definition
of Tr, whereas the pentagram commutes because by picking basis for X and Y, and the
corresponding dual basis via X* ®; Y* ~ (X ®; Y)*, direct computations imply directly
the commutativity. It follows that the inner triangle commutes, as envisaged. O]

Exercise 6

Given M, N left modules over a ring R, show that the functors Hom(—, M) and Hom(N, —)

are both left exact. Le. whenever X &Y % Z 5 0and 0 — X' — Y/ — Z are exact
sequences of left R-modules, then the following are exact:

0 — Homp(Z, M) 25 Homp(Y, M) <% Homp(X, M),
0 — Hompg(N, X) — Homg(N,Y) — Hompg(N, Z) .
Proof. For the first exactness, it suffices to show the following three properties:

e The composition relation a, o 5, = 0 holds, which is trivial.

e The map [, is injective, which follows from the fact that if 5.(f) = 0 then So f =0,
which implies that f = 0 because 3 is epimorphism.

e The arguably hardest part of this exercise, which is to show that there is no f &
ker cv, \ im (,, thereby showing, together with «, o 8, = 0, that ker 5, = im «.

To show the last item, note that ker 3 = im « C ker f so we can find f : Y/ ker 3 — M
that makes the following diagram commute:

X <5y 2 47
0
| g )
N (5)

M N Y/ ker g

where /3 is the left inverse of the injective map 3 :Y/ker 8 — Z.

But f = 5.(f o '), contradicting the fact that f ¢ im f..

the second exactness follows similarly. O]



