
Homework Assignment 1 solution - The tensor product

Hopf algebras - Spring Semester 2018

What follows are proposed solutions that are not too thorough. Where some necessary
details are lacking, a bold will be used. The student is encourage to fill in the details
autonomously when a claim in bold does not seem to follow naturally.1

Exercise 1

Consider a module X ∈MR and two-sided ideals I, J ⊂ R.

a) Show that X ⊗R R/I ' X/XI in MR/I .

b) Show that R/I ⊗R R/J ' R/(I + J) in MR.

Sketch of proof of 1.a). We will construct two R-linear maps φ : X/XI → X ⊗R R/I and
ψ̃ : X ⊗R R/I → X/XI that are each other inverses, which concludes the proof.

For the first map, take φ(x + XI) = x ⊗ (1 + I), which is well defined (i.. does not
depend on the choice of representative x) and R-linear, as one can easily show.

To construct ψ̃, recall the universal property for X ⊗R R/I: For any middle linear map
ψ : X × R/I → M there exists a unique R-module morphism ψ̃ that makes the following
commute:

X ×R/I X ⊗R R/I

M

⊗

ψ ∃ ! ψ̃
(1)

Choose M = X/XI and ψ = ((x, r+ I) 7→ xr+ I). After we show that the map is well
defined and middle linear, we obtain an R-linear map ψ̃ : X ⊗R R/I.

Remains only to observe that ψ̃ ◦ φ = id, which is trivial, and φ ◦ ψ̃ = id, which can be
computed for the generators of X ⊗R R/I as follows:

φ ◦ ψ̃(x⊗ (r + I)) = φ(xr + I) = xr ⊗ (1 + I) = x⊗ (r + I) .

This concludes the isomorphism.

Sketch of proof of 1.b). This is very similar to 1.a), as we will find maps φ : R/(I + J) →
R/I ⊗R R/J and ψ̃ : R/I ⊗R R/J → R/(I + J) that are R-linear and inverse of each other.

1If typos or incorrections are found please write to raul.penaguiao@math.uzh.ch
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We define φ = (x + I + J 7→ x + I ⊗ 1 + J). Note that this is well defined, because if
x = x′ + xi + xj, with xi ∈ I and xj ∈ J , then we have

φ(x+ I + J) = x′ + xi + xj + I ⊗ 1 + J = (x′ + I ⊗ 1 + J) + (xj + I ⊗ 1 + J)

= φ(x′ + I + J) + (1 + I ⊗ xj + J) = φ(x′ + I + J) + 0 ,
(2)

so the definition of φ does not depend on the representative x. Additionally, this is R-linear.
To define ψ̃, let ψ : R/I ×R/J be given by (x1 + I, x2 + J) 7→ x1x2 + I + J . This is well

defined and also is middle linear.
The fact that these maps are inverses of each other is easy to check.

Exercise 2

a) Let ι : Z/(2)→ Z/(4) be the unique injective group homomorphism. Compute id⊗Zι
that maps Z/(2)⊗Z Z/(2)→ Z/(2)⊗Z Z/(4).

b) For two integers m,n, compute Z/(m)⊗Z Z/(n).

c) Compute, for an abelian group G and an integer n, the tensor G⊗Z Z/(n).

d) An abelian group G is a torsion abelian group if for every element g ∈ G there is
a natural number n such that ng = 0. Show that for any torsion group G we have
G⊗Z Q = 0.

Solutions of exercise 2.

a) This is the zero map, as id⊗Zι(1̄⊗ 1̄) = 1̄⊗ 2̄ = 2̄⊗ 1̄ = 0.

b) This is Z/(d), where d = gcd(m,n). Note exercise 1.b).

c) This is G/nG. Note exercise 1.a).

d) Any generator is the zero element, as g ⊗ q = g ⊗ n q
n

= gn⊗ q
n

= 0.

Exercise 3

Let X, Y be vector spaces over k, and U ⊆ X, V ⊆ Y be subspaces. Let pU : U → X and
pV : V → Y be the canonical inclusions.

Show that
ker pU ⊗k pV = X ⊗k V + U ⊗k Y .

Sketch of proof. Let Z = X ⊗k V + U ⊗k Y . Note that pU ⊗R pV is surjective, so it suffices
to show that the map pU ⊗R pV : (X ⊗R Y )/Z → X/U ⊗R Y/V is well defined and injective.

The fact that it is well defined is trivial, since we can observe that Z ⊂ ker pU ⊗R pV .
To show that it is injective, it is enough to show that φ̃ defined via the middle linear map

φ : (x+ U, y + V ) 7→ x⊗ y + Z ,

is the left inverse of pU ⊗R pV , i.e. φ ◦ pU ⊗ pV = id.
It immediately follows that pU ⊗ pV is injective, as desired.
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Exercise 4

Find modules M,N over a ring R such that M ⊗Z N 6'M ⊗R N as Z-modules.

Proof. Take R = Z[i], the ring of Gaussian integers, and take M = N = R. Clearly
M ⊗Z N ' Z2 ⊗Z Z2 ' Z4.

However M ⊗R N ' R as R-modules, so M ⊗R N ' Z2 as Z-modules.

Exercise 5

Let X, Y be k-vector spaces

a) Show that the map (x, f) 7→ (y 7→ f(y)x) defines a linear map from X × Y ∗, which
gives rise to a linear map φX,Y : X ⊗k Y ∗ → Homk(Y,X). Additionally, show that if
either X or Y are finite dimensional, then φX,Y is an isomorphism.

b) Show that the map (x, f) 7→ f(x) defines a bilinear map from X×X∗, which gives rise
to a linear map eX : X ⊗k X∗ → k.

c) Define TrX = eX ◦ φ−1
X,X : Endk(X) → k, for X finite dimensional. Show that if we

take F ∈ Endk(X) and G ∈ Endk(Y ) then

TrX⊗Y (F ⊗G) = TrX(F ) TrY (G) .

Sketch of a). That the map φ = (x, f) 7→ (y 7→ f(y)x) satisfies the middle linear prop-
erty implies that it lifts to an k-linear map φ̃ : X ⊗R Y ∗ → HomR(Y,X).

This map, once chosen a basis {xI}i∈I of X, can be easily seen to be the following
composition

X ⊗k Y ∗ (⊕i∈Ikxi)⊗k Y ∗ ⊕i∈I (kxi ⊗k Y ∗) ⊕i∈I Hom(Y, kxi)

Hom(Y,⊕i∈Ikxi)

'

φ̃

' '

ι (3)

where ι is the canonical inclusion. If X is finite dimensional, then f 7→ (x∗i ◦ f)i∈I is an
inverse of ι. If Y is finite dimensional we can see that ι is also invertible. In both cases,
we conclude that φ̃ is an isomorphism.

In b), we need only to check the middle linear property of the given map and recall the
universal property.

Sketch of c). The following diagram commutes for X, Y finite dimensional:

End(X ⊗k Y ) End(X)⊗k End(Y ) (X ⊗k X∗)⊗k (Y ⊗k Y ∗)

(X ⊗k Y )⊗k (X ⊗k Y )∗ k

'

TrX⊗kY TrX ⊗k TrY

φX⊗kφY

eX⊗keY

eX⊗kY

φX⊗kY (4)
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by simply checking that the lower triangle and the leftmost triangle commute by definition
of Tr, whereas the pentagram commutes because by picking basis for X and Y , and the
corresponding dual basis via X∗ ⊗k Y ∗ ' (X ⊗k Y )∗, direct computations imply directly
the commutativity. It follows that the inner triangle commutes, as envisaged.

Exercise 6

Given M,N left modules over a ring R, show that the functors Hom(−,M) and Hom(N,−)

are both left exact. I.e. whenever X
α−→ Y

β−→ Z → 0 and 0 → X ′ → Y ′ → Z are exact
sequences of left R-modules, then the following are exact:

0→ HomR(Z,M)
β∗−→ HomR(Y,M)

α∗−→ HomR(X,M) ,

0→ HomR(N,X)→ HomR(N, Y )→ HomR(N,Z) .

Proof. For the first exactness, it suffices to show the following three properties:

• The composition relation α∗ ◦ β∗ = 0 holds, which is trivial.

• The map β∗ is injective, which follows from the fact that if β∗(f) = 0 then β ◦ f = 0,
which implies that f = 0 because β is epimorphism.

• The arguably hardest part of this exercise, which is to show that there is no f ∈
kerα∗ \ im β∗, thereby showing, together with α∗ ◦ β∗ = 0, that ker β∗ = imα∗.

To show the last item, note that ker β = imα ⊂ ker f so we can find f̄ : Y/ ker β →M
that makes the following diagram commute:

X Y Z

M Y/ ker β

α

0

β

f π β′

f̄

(5)

where β′ is the left inverse of the injective map β̄ : Y/ ker β → Z.

But f = β∗(f̄ ◦ β′), contradicting the fact that f 6∈ im β∗.

the second exactness follows similarly.
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