Homework Assignment 2 solution - Algebras, Category
Theory

Hopf algebras - Spring Semester 2018

Exercise 1 - Algebras, Category Theory

a) Let V and W be finite dimensional vector spaces over k. Show that there is an algebra
isomorphism

What does that imply for the algebra M, (k) @ M,,(k), m,n > 17

Proof. The k-linear map
¢ : Endi(V) @k Endg, (W) — Endg(V @, W)
with
o(f@g): VerW -V, Wovwr— fv)® f(w)

is an algebra homomorphism, because it preserves the unit element and is multiplicative
on the Z-span (f ® ¢) rernd, (v),gebnd,(w) of Endi (V) @ Endg(W).

It suffices to check that ¢ is injective, because both spaces have the same dimension
dimg (V')dimg(W). In order to verify ker ¢ = 0, let (b;)1<;<,, denote a basis of V. Then
fij V=V with f;;(bx) = 6;xb; is a basis of Endy(V'). Likewise, let (¢5)s be a basis
of W and define a basis (gs)s, of Endg (W) in this way. Thus (fi; ® gst)ijs¢ is a basis

If (Nijs¢) is a family in & with
@(Z Aijsifij @ gsi) =0,
,7,8,t
then it follows for all ¢ and s that
0= Z Aigsifig ® gsi)(bi ® cs) = Z Aij,s,tbj @
i,4,8,t Jit

and hence A, ;s = 0 for all j,¢.
This implies that M, (k) ®x M, (k) ~ M., (k). O



b) Let M be a finite abelian group. Show that there are integers n > 1, my,...,m, > 1

such that
k[M] = k[XlaaXn]/<XIn1 — 1,,XTT" — 1)

Hint: Show first that k[G' x H] ~ k[G] ® k[H] for any two monoids G and H.

Proof. Let « : G x H — k[G] ® k[H], (9,h) — g ® h. By the universal property of
k|G x H] there is a unique algebra homomorphism ¢ : k[G x H| — k[G] ®j k[H] such
that:

k|G x H] —2— k[G] ®y k[H]

Gx H

¢ maps the basis (g,h)gseqren to the basis (¢ ® h)geqnen, hence it is an algebra
isomorphism.

Since M is a finite abelian group, there are integers mq,...,m, > 1, n > 1 such that
M ~ H Z/(my).
1<i<n
Consequently,

KM] = Q) KIZ/(m:)]

1<i<n

~ Q) kX)X 1)

1<i<n

~ KX, X (X =1, X 1),

In the last isomorphism we have used that for all f € k[X], g € k[Y] it holds that

KIXT/(f) @ k[Y]/(9) ~ KIX, Y]/(f, 9)-

To see this, note that the universal property of k[ X, Y] yields an algebra homomorphism
¥ KX, Y] = KX)/(F) @ k[Y]/() with (X)=X @ 1Le(Y)=10Y.

The ideal (f, g) C k[X, Y] gets mapped to zero, hence 1 induces an algebra homomor-
phism

v KX, Y]/(f,9) = KIX]/(f) @ k[Y]/(9) with $(X)=X@1Ly(Y)=18Y.

The map
KIX]/(f) @ k[Y]/(9) ~ kX, Y]/(f,9), (P;q) — Pq

is well-defined and inverse to . O



Exercise 2 - Algebras and field extensions

Let £k C L be a field extension.

a)

Let A be a k-algebra. Show that the L-algebra A ®; L has dimension
Proof. 1t (a;)ics is a k-basis of A, then (a; ® 1);c; is an L-basis of A ®; L. (It is

straight-forward to verify that this family is an L-generating family of A ®, L and
L-linear independent. 0

Verify that k[X] ®, L ~ L[X] as L-algebras.

Proof. The universal property of the polynomial algebra L[X] yields an L-algebra
homomorphism

p: LX] = k[X]®r L with ¢(X)=X®Il.
The linear map ¢ : k[X]| ®x L — L[X] with ¢(f ® z) = fx is the inverse of . [

Let kK C L be a finite Galois extension. Find an explicit description of the L-algebra
L ®; L.

Proof. Since k C L is a finite Galois extension it has a primitive element a € L. The
irreducible, separable, monic minimal polynomial f of a satisfies

L = k(a) = K[X]/(f)
and hence
L& L= K[X]/(f) @4 L 1)
as L-algebras. The sequence
0= (f) = K[X] = K[X]/(f) = 0
is exact. By the exactness of the tensor product, it follows that
0— (f) @k L — k[X]®, L — E[X]/(f)® L—0
is exact. Hence

KIX1/(f) @ L~ (k[X]® L)/((f) © L). (2)



Moreover:
k[X] @ L - = LIX]

can (f) X L (f) can

(k[XT® L)/((f) ® L) —— L[X]/(f)
Hence:
(k[X]® L)/((f) ® L) = LIX]/(f). (3)

Let n = dimg(L). Since f is separable and monic, we can find n distinct elements
ai,...,a, € L such that f = []_,(X — a;) in L[X]. Using the Chinese remainder
theorem, it follows that

LIX1/(f) = LIX)/(J [ (X = a) =~ [ LIX)/(X = ai) ~ L” (4)
Thus
L®,L~L"

Exercise 3 - Morita equivalence

a) Let R be a ring and S = M,,(R) the ring of n x n matrices with coefficients in R. Let
P be the space of all matrices in M, (R) with the property, that the coefficients in the
rows 2,...,n are equal to zero. Let ) be the space of all matrices in M, (R) with the
property, that the coefficients in the columns 2, ..., n are equal to zero. Show that

P®sQ ~ Rin pRMp and Qg P ~Sin gMg .

Proof. Let pi1 be the projection that sends a matrix to its coefficient in the first row
and first column. Then

P x Q — R, (A, B) — p11<AB)
is M,,(R) middle-linear. The induced additive map
f:PRsQ— R

is (R, R)-linear. f is clearly surjective. It is also injective, because if t =) . A, ® B; €
ker(f) then



Hence f is an isomorphism.

The multiplication
QxP—S, (A B)— AB

is clearly R middle-linear. The induced map
g:Q®Rr P — S

is (S, S)-linear. For all 1 <i,j < mn let I, ; denote the matrix with the coefficient in the
i-th row and j-th column being equal to 1 and the remaining coefficients being equal
to 0. Then Q) ®p P has the basis (E;; ® E4 j)1<ij<n and g maps this basis to the basis
(E;j)ij of S. Hence g is an isomorphism. O

Let R, S be rings, P an (R, S)-bimodule, @ an (S, R)-bimodule. Suppose that
P®sQ ~Rin gRMp and QR P ~Sin gMg .

Show that the functor Q®r— : gM — sM and PRg— : ¢ M — rM are quasi-inverse
equivalences of categories.

Proof. Let p: R - P®s@Q in pMpand ¢ : S — Q ® Pin gMg. Let f:V - W
be a morphism in gk M. Then

V- Rep V2 (PRsQ)@rV - PRg (QRR V)

f lid@id@f
WS R W 22% (P Rs Q) @p W -5 P g (Q @ W).

Hence F' = Q ®r — and G = P ®g — satisfy GF' ~ id,»s. Analogously we may show
that F'G ~ id O

Applications: Equivalences of categories preserve category theoretic notions such as co-

products. For example, if R = k is a field, then there is exists a module U € ;M such that

for all V' € ;M there is an index set I such that V' ~ [],., U. Since ;M =~ p;, ;)M an
analogous statement holds for left modules over M, (k).

Exercise 4 - Exact functors

Let R and S be rings. A covariant functor F' : gM — ¢M is termed left exact, if for any

exact sequence 0 — A B2 Cin rM the sequence

0— F(A) ™M ) pe)

is exact as well. It is termed right-exact, if for any exact sequence A B2 C = 0 the

sequence

P p3)y X Py = o



is exact as well. We say F is exact, if it is both left- and right-exact. A contravariant functor

F: gpM — ¢ M is left-exact, if for any exact sequence 0 — C°P 97 gop I pov iy rM°P
the sequence

0 F(C) 24 pp)y Y pea

is exact. We have seen that for all left R-modules M, N the functors Hom(M, —) and
Hom(—, N) are left-exact.

a) Let X Ly andY % Z be group homomorphisms of abelian groups. Show that if

0 — Homy(Z, A) Hom{gid) Homy(Y, A) Hom{/id) Homy (X, A)
is exact for every abelian group A, then
xLyLz-0
is exact as well.

Proof. Let § = Hom(g,id) and f = Hom(f,id).

In the special case A = Z, it follows that f(§(id;)) = 0. That is gf = 0 and hence
im(f) C ker(g).

In the special case A = Y/im(f) it holds that cany : Y — Y/im(f) satisfies f(cany) =

0. As ker(f) = im(g) there is a morphism A : Z — Y/im(f) with hg = can,. In
particular ker(hg) = ker(cany) = im(f). This implies ker(g) C im(f).

In the special case A = Z/im(g) it holds that can; : Z — Z/im(g) satisfies g(can;) = 0.
As g is injective, it follows that can; = 0. That is, im(g) = Z. [

b) Let R and S be rings, and let zp Xg be an (R, X)-bimodule. Recall that the functor
rXs ®g —: M — gpM

is left adjoint to
Hompg(rXg, —) : pRM — sM.

Combine this fact with a) to deduce that for any right R-module Mg the functor
M®p—: RM — M

is right-exact.



Proof. Let Ny EEIN N, —25 N3 — 0 be an exact sequence in g M. Let A be an arbitrary
abelian group. Since M ®g — is left-adjoint to Homg (M, —), it follows that:

0 0

HomZ(M KR Ng, A) i) HOHlR(Ng, R HomZ(M, A))
Hom(id ®g,id) Hom(g,id)

Homgz (M ®p No, A) —— Hompg(Ny, p Homgz (M, A))

Hom(id ® f,id) Hom( f,id)

HomZ(M Xpr Nl, A) i) HOIHR<N1, R HOIIlz(M, A))

The right-column is exact because the functor Homg(—, Homz (M, A)) is left-exact. It
follows that the left column is exact. As this holds for arbitrary abelian groups A, it
follows from a) that

M &p Ny M @p Ny S M @5 Ny — 0

1s exact. n

¢) An R-module M is termed free, if there is an index set I with M ~ RY). M is termed
projective if there is an R-module N such that M & N is free. Show that if M is a
projective right R-module, then the functor M ®p — is exact.

Comment: It is clear that the same holds also for the functor —®z N if N is a projective
left R-module. In particular, the tensor product over a skew field is always exact.

Proof. 1t remains to verify that M & r— is left-exact. Let us first consider the case where
M is free. That is, without loss of generality we may assume that M = R() = [Lic; R
with R; = R. Let

0—>N1L>NQL>N3

be an exact sequence of left R-modules. Then for all ¢ € I:

00— M&p Ny —2 M op Ny—2% M @ Ny
id® d®
0—— Lo, Ri®r N 2511, Ri @k Ng 2511, Ri ®r N3
J id v, id \/
00— R, ®r N, 2l R; ®@r N =9 R, ®r N3
f g
0 N1 N2 NS



Hence

0—>M®RN1E>M®RNQ%M®RN3

is exact.

It remains to consider the projective case. Suppose that M & M’ is free. It follows that
M ®gr N; — (M & M') ®g N; is injective. (Here we really need to use that M & M’ is
free. The fact that M C M & M’ is a submodule is not enough.) The exactness of the
first row in

0—— (M@ M) @r N =25 (M & M) @r No 2% (M & M") @ N

id®f ] id ®g
_ _

O—)M@RNl M®RN2 M@RN3

implies the exactness of the second row. O



