
Homework Assignment 2 solution - Algebras, Category
Theory

Hopf algebras - Spring Semester 2018

Exercise 1 - Algebras, Category Theory

a) Let V and W be finite dimensional vector spaces over k. Show that there is an algebra
isomorphism

Endk(V ⊗k W ) ' Endk(V )⊗k Endk(W ).

What does that imply for the algebra Mn(k)⊗k Mm(k), m,n ≥ 1?

Proof. The k-linear map

ϕ : Endk(V )⊗k Endk(W )→ Endk(V ⊗k W )

with
ϕ(f ⊗ g) : V ⊗k W → V ⊗k W, v ⊗ w 7→ f(v)⊗ f(w)

is an algebra homomorphism, because it preserves the unit element and is multiplicative
on the Z-span (f ⊗ g)f∈Endk(V ),g∈Endk(W ) of Endk(V )⊗k Endk(W ).

It suffices to check that ϕ is injective, because both spaces have the same dimension
dimk(V )dimk(W ). In order to verify kerϕ = 0, let (bi)1≤i≤n denote a basis of V . Then
fi,j : V → V with fi,j(bk) = δi,kbj is a basis of Endk(V ). Likewise, let (cs)s be a basis
of W and define a basis (gs,t)s,t of Endk(W ) in this way. Thus (fi,j⊗ gs,t)i,j,s,t is a basis
of Endk(V )⊗k Endk(W ).

If (λi,j,s,t) is a family in k with

ϕ(
∑
i,j,s,t

λi,j,s,tfi,j ⊗ gs,t) = 0,

then it follows for all i and s that

0 = ϕ(
∑
i,j,s,t

λi,j,s,tfi,j ⊗ gs,t)(bi ⊗ cs) =
∑
j,t

λi,j,s,tbj ⊗ ct,

and hence λi,j,s,t = 0 for all j, t.

This implies that Mn(k)⊗k Mm(k) 'Mmn(k).
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b) Let M be a finite abelian group. Show that there are integers n ≥ 1, m1, . . . ,mn ≥ 1
such that

k[M ] ' k[X1, . . . , Xn]/(Xm1
1 − 1, . . . , Xmn

n − 1).

Hint: Show first that k[G×H] ' k[G]⊗ k[H] for any two monoids G and H.

Proof. Let ι : G × H → k[G] ⊗k k[H], (g, h) → g ⊗ h. By the universal property of
k[G×H] there is a unique algebra homomorphism ϕ : k[G×H]→ k[G]⊗k k[H] such
that:

k[G×H]
ϕ
// k[G]⊗k k[H]

G×H

can

OO

ι
66

ϕ maps the basis (g, h)g∈G,h∈H to the basis (g ⊗ h)g∈G,h∈H , hence it is an algebra
isomorphism.

Since M is a finite abelian group, there are integers m1, . . . ,mn ≥ 1, n ≥ 1 such that

M '
∏

1≤i≤n

Z/(mi).

Consequently,

k[M ] '
⊗
1≤i≤n

k[Z/(mi)]

'
⊗
1≤i≤n

k[Xi]/(X
mi
i − 1)

' k[X1, . . . , Xn]/(Xm1
1 − 1, . . . , Xmn

n − 1).

In the last isomorphism we have used that for all f ∈ k[X], g ∈ k[Y ] it holds that

k[X]/(f)⊗ k[Y ]/(g) ' k[X, Y ]/(f, g).

To see this, note that the universal property of k[X, Y ] yields an algebra homomorphism

ψ : k[X, Y ]→ k[X]/(f)⊗ k[Y ]/(g) with ψ(X) = X̄ ⊗ 1, ψ(Y ) = 1⊗ Ȳ .

The ideal (f, g) ⊂ k[X, Y ] gets mapped to zero, hence ψ induces an algebra homomor-
phism

ψ̄ : k[X, Y ]/(f, g)→ k[X]/(f)⊗ k[Y ]/(g) with ψ̄(X̄) = X̄ ⊗ 1, ψ̄(Ȳ ) = 1⊗ Ȳ .

The map
k[X]/(f)⊗ k[Y ]/(g) ' k[X, Y ]/(f, g), (p̄, q̄) 7→ pq

is well-defined and inverse to ψ.
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Exercise 2 - Algebras and field extensions

Let k ⊂ L be a field extension.

a) Let A be a k-algebra. Show that the L-algebra A⊗k L has dimension

dimL(A⊗k L) = dimk(A).

Proof. If (ai)i∈I is a k-basis of A, then (ai ⊗ 1)i∈I is an L-basis of A ⊗k L. (It is
straight-forward to verify that this family is an L-generating family of A ⊗k L and
L-linear independent.

b) Verify that k[X]⊗k L ' L[X] as L-algebras.

Proof. The universal property of the polynomial algebra L[X] yields an L-algebra
homomorphism

ϕ : L[X]→ k[X]⊗k L with ϕ(X) = X ⊗ 1.

The linear map ψ : k[X]⊗k L→ L[X] with ψ(f ⊗ x) = fx is the inverse of ϕ.

c) Let k ⊂ L be a finite Galois extension. Find an explicit description of the L-algebra
L⊗k L.

Proof. Since k ⊂ L is a finite Galois extension it has a primitive element a ∈ L. The
irreducible, separable, monic minimal polynomial f of a satisfies

L = k(a) ' k[X]/(f)

and hence

L⊗k L ' k[X]/(f)⊗k L (1)

as L-algebras. The sequence

0→ (f)→ k[X]→ k[X]/(f)→ 0

is exact. By the exactness of the tensor product, it follows that

0→ (f)⊗k L→ k[X]⊗k L→ k[X]/(f)⊗k L→ 0

is exact. Hence

k[X]/(f)⊗k L ' (k[X]⊗ L)/((f)⊗ L). (2)
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Moreover:
k[X]⊗k L

can

��

' // L[X]

can

��

(f)⊗ L
?�

OO

// (f)
?�

OO

(k[X]⊗ L)/((f)⊗ L) ' // L[X]/(f)

Hence:

(k[X]⊗ L)/((f)⊗ L) ' L[X]/(f). (3)

Let n = dimk(L). Since f is separable and monic, we can find n distinct elements
a1, . . . , an ∈ L such that f =

∏n
i=1(X − ai) in L[X]. Using the Chinese remainder

theorem, it follows that

L[X]/(f) ' L[X]/(
n∏
i=1

(X − ai)) '
n∏
i=1

L[X]/(X − ai) ' Ln. (4)

Thus
L⊗k L ' Ln.

Exercise 3 - Morita equivalence

a) Let R be a ring and S = Mn(R) the ring of n× n matrices with coefficients in R. Let
P be the space of all matrices in Mn(R) with the property, that the coefficients in the
rows 2, . . . , n are equal to zero. Let Q be the space of all matrices in Mn(R) with the
property, that the coefficients in the columns 2, . . . , n are equal to zero. Show that

P ⊗S Q ' R in RMR and Q⊗R P ' S in SMS .

Proof. Let p11 be the projection that sends a matrix to its coefficient in the first row
and first column. Then

P ×Q→ R, (A,B)→ p11(AB)

is Mn(R) middle-linear. The induced additive map

f : P ⊗S Q→ R

is (R,R)-linear. f is clearly surjective. It is also injective, because if t =
∑

iAi⊗Bi ∈
ker(f) then

t =
∑
i

Ai ⊗Bi = (
∑
i

AiBi)⊗ I = 0.

4



Hence f is an isomorphism.

The multiplication
Q× P → S, (A,B)→ AB

is clearly R middle-linear. The induced map

g : Q⊗R P → S

is (S, S)-linear. For all 1 ≤ i, j ≤ n let Ii,j denote the matrix with the coefficient in the
i-th row and j-th column being equal to 1 and the remaining coefficients being equal
to 0. Then Q⊗R P has the basis (Ei,1⊗E1,j)1≤i,j≤n and g maps this basis to the basis
(Ei,j)i,j of S. Hence g is an isomorphism.

b) Let R, S be rings, P an (R, S)-bimodule, Q an (S,R)-bimodule. Suppose that

P ⊗S Q ' R in RMR and Q⊗R P ' S in SMS .

Show that the functor Q⊗R− : RM→ SM and P⊗S− : SM→ RM are quasi-inverse
equivalences of categories.

Proof. Let ϕ : R → P ⊗S Q in RMR and ψ : S → Q ⊗R P in SMS. Let f : V → W
be a morphism in RM. Then

V

f

��

can // R⊗R V
ϕ⊗id

// (P ⊗S Q)⊗R V can // P ⊗S (Q⊗R V )

id⊗ id⊗f
��

W can // R⊗RW
ϕ⊗id

// (P ⊗S Q)⊗RW can // P ⊗S (Q⊗RW ).

Hence F = Q⊗R − and G = P ⊗S − satisfy GF ' id
RM. Analogously we may show

that FG ' id
SM

Applications: Equivalences of categories preserve category theoretic notions such as co-
products. For example, if R = k is a field, then there is exists a module U ∈ kM such that
for all V ∈ kM there is an index set I such that V '

∐
i∈I U . Since kM ' Mn(k)M an

analogous statement holds for left modules over Mn(k).

Exercise 4 - Exact functors

Let R and S be rings. A covariant functor F : RM → SM is termed left exact, if for any

exact sequence 0→ A
f−→B

g−→C in RM the sequence

0→ F (A)
F (f)−→F (B)

F (g)−→F (C)

is exact as well. It is termed right-exact, if for any exact sequence A
f−→B

g−→C → 0 the
sequence

F (A)
F (f)−→F (B)

F (g)−→F (C)→ 0
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is exact as well. We say F is exact, if it is both left- and right-exact. A contravariant functor

F : RM → SM is left-exact, if for any exact sequence 0 → Cop gop−→Bop fop−→Aop in RMop

the sequence

0→ F (C)
F (g)−→F (B)

F (f)−→F (A)

is exact. We have seen that for all left R-modules M,N the functors Hom(M,−) and
Hom(−, N) are left-exact.

a) Let X
f−→ Y and Y

g−→ Z be group homomorphisms of abelian groups. Show that if

0→ HomZ(Z,A)
Hom(g,id)−→ HomZ(Y,A)

Hom(f,id)−→ HomZ(X,A)

is exact for every abelian group A, then

X
f−→Y

g−→Z → 0

is exact as well.

Proof. Let g̃ = Hom(g, id) and f̃ = Hom(f, id).

In the special case A = Z, it follows that f̃(g̃(idZ)) = 0. That is gf = 0 and hence
im(f) ⊂ ker(g).

In the special case A = Y/ im(f) it holds that can2 : Y → Y/ im(f) satisfies f̃(can2) =
0. As ker(f̃) = im(g̃) there is a morphism h : Z → Y/ im(f) with hg = can2. In
particular ker(hg) = ker(can2) = im(f). This implies ker(g) ⊂ im(f).

In the special case A = Z/ im(g) it holds that can1 : Z → Z/ im(g) satisfies g̃(can1) = 0.
As g̃ is injective, it follows that can1 = 0. That is, im(g) = Z.

b) Let R and S be rings, and let RXS be an (R,X)-bimodule. Recall that the functor

RXS ⊗S − : SM→ RM

is left adjoint to
HomR(RXS,−) : RM→ SM.

Combine this fact with a) to deduce that for any right R-module MR the functor

M ⊗R − : RM→ ZM

is right-exact.
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Proof. Let N1
f−→N2

g−→N3 → 0 be an exact sequence in RM. Let A be an arbitrary
abelian group. Since M ⊗R − is left-adjoint to HomR(M,−), it follows that:

0

��

0

��

HomZ(M ⊗R N3, A)

Hom(id⊗g,id)
��

' // HomR(N3, R HomZ(M,A))

Hom(g,id)

��

HomZ(M ⊗R N2, A)

Hom(id⊗f,id)
��

' // HomR(N2, R HomZ(M,A))

Hom(f,id)

��

HomZ(M ⊗R N1, A) ' // HomR(N1, R HomZ(M,A))

The right-column is exact because the functor HomR(−,HomZ(M,A)) is left-exact. It
follows that the left column is exact. As this holds for arbitrary abelian groups A, it
follows from a) that

M ⊗R N1
id⊗f−→M ⊗R N2

id⊗g−→M ⊗R N3 → 0

is exact.

c) An R-module M is termed free, if there is an index set I with M ' R(I). M is termed
projective if there is an R-module N such that M ⊕ N is free. Show that if M is a
projective right R-module, then the functor M ⊗R − is exact.

Comment: It is clear that the same holds also for the functor −⊗RN if N is a projective
left R-module. In particular, the tensor product over a skew field is always exact.

Proof. It remains to verify thatM⊗R− is left-exact. Let us first consider the case where
M is free. That is, without loss of generality we may assume that M = R(I) =

∐
i∈I Ri

with Ri = R. Let

0→ N1
f−→N2

g−→N3

be an exact sequence of left R-modules. Then for all i ∈ I:

0 //M ⊗R N1
id⊗f

//M ⊗R N2
id⊗g

//M ⊗R N3

0 //
∐

i∈I Ri ⊗R N1

'

OO

id⊗f
//
∐

i∈I Ri ⊗R N2

'

OO

id⊗g
//
∐

i∈I Ri ⊗R N3

'

OO

0 // Ri ⊗R N1

?�

OO

id⊗f
// Ri ⊗R N2

?�

OO

id⊗g
// Ri ⊗R N3

?�

OO

0 // N1

'

OO

f
// N2

'

OO

g
// N3

'

OO
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Hence

0 //M ⊗R N1
id⊗f

//M ⊗R N2
id⊗g

//M ⊗R N3

is exact.

It remains to consider the projective case. Suppose that M⊕M ′ is free. It follows that
M ⊗R Ni → (M ⊕M ′)⊗R Ni is injective. (Here we really need to use that M ⊕M ′ is
free. The fact that M ⊂M ⊕M ′ is a submodule is not enough.) The exactness of the
first row in

0 // (M ⊕M ′)⊗R N1
id⊗f

// (M ⊕M ′)⊗R N2
id⊗g

// (M ⊕M ′)⊗R N3

0 //M ⊗R N1

?�

OO

id⊗f
//M ⊗R N2

?�

OO

id⊗g
//M ⊗R N3

?�

OO

implies the exactness of the second row.
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