Homework Assignment 2 solution - Algebras, Category Theory

Hopf algebras - Spring Semester 2018

Exercise 1 - Algebras, Category Theory

a) Let V and W be finite dimensional vector spaces over k. Show that there is an algebra isomorphism

$$
\operatorname{End}_{k}\left(V \otimes_{k} W\right) \simeq \operatorname{End}_{k}(V) \otimes_{k} \operatorname{End}_{k}(W)
$$

What does that imply for the algebra $M_{n}(k) \otimes_{k} M_{m}(k), m, n \geq 1$?
Proof. The k-linear map

$$
\varphi: \operatorname{End}_{k}(V) \otimes_{k} \operatorname{End}_{k}(W) \rightarrow \operatorname{End}_{k}\left(V \otimes_{k} W\right)
$$

with

$$
\varphi(f \otimes g): V \otimes_{k} W \rightarrow V \otimes_{k} W, v \otimes w \mapsto f(v) \otimes f(w)
$$

is an algebra homomorphism, because it preserves the unit element and is multiplicative on the \mathbb{Z}-span $(f \otimes g)_{f \in \operatorname{End}_{k}(V), g \in \operatorname{End}_{k}(W)}$ of $\operatorname{End}_{k}(V) \otimes_{k} \operatorname{End}_{k}(W)$.
It suffices to check that φ is injective, because both spaces have the same dimension $\operatorname{dim}_{k}(V) \operatorname{dim}_{k}(W)$. In order to verify $\operatorname{ker} \varphi=0$, let $\left(b_{i}\right)_{1 \leq i \leq n}$ denote a basis of V. Then $f_{i, j}: V \rightarrow V$ with $f_{i, j}\left(b_{k}\right)=\delta_{i, k} b_{j}$ is a basis of $\operatorname{End}_{k}(V)$. Likewise, let $\left(c_{s}\right)_{s}$ be a basis of W and define a basis $\left(g_{s, t}\right)_{s, t}$ of $\operatorname{End}_{k}(W)$ in this way. Thus $\left(f_{i, j} \otimes g_{s, t}\right)_{i, j, s, t}$ is a basis of $\operatorname{End}_{k}(V) \otimes_{k} \operatorname{End}_{k}(W)$.
If $\left(\lambda_{i, j, s, t}\right)$ is a family in k with

$$
\varphi\left(\sum_{i, j, s, t} \lambda_{i, j, s, t} f_{i, j} \otimes g_{s, t}\right)=0
$$

then it follows for all i and s that

$$
0=\varphi\left(\sum_{i, j, s, t} \lambda_{i, j, s, t} f_{i, j} \otimes g_{s, t}\right)\left(b_{i} \otimes c_{s}\right)=\sum_{j, t} \lambda_{i, j, s, t} b_{j} \otimes c_{t}
$$

and hence $\lambda_{i, j, s, t}=0$ for all j, t.
This implies that $M_{n}(k) \otimes_{k} M_{m}(k) \simeq M_{m n}(k)$.
b) Let M be a finite abelian group. Show that there are integers $n \geq 1, m_{1}, \ldots, m_{n} \geq 1$ such that

$$
k[M] \simeq k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{m_{1}}-1, \ldots, X_{n}^{m_{n}}-1\right)
$$

Hint: Show first that $k[G \times H] \simeq k[G] \otimes k[H]$ for any two monoids G and H.
Proof. Let $\iota: G \times H \rightarrow k[G] \otimes_{k} k[H],(g, h) \rightarrow g \otimes h$. By the universal property of $k[G \times H]$ there is a unique algebra homomorphism $\varphi: k[G \times H] \rightarrow k[G] \otimes_{k} k[H]$ such that:

φ maps the basis $(g, h)_{g \in G, h \in H}$ to the basis $(g \otimes h)_{g \in G, h \in H}$, hence it is an algebra isomorphism.
Since M is a finite abelian group, there are integers $m_{1}, \ldots, m_{n} \geq 1, n \geq 1$ such that

$$
M \simeq \prod_{1 \leq i \leq n} \mathbb{Z} /\left(m_{i}\right)
$$

Consequently,

$$
\begin{aligned}
k[M] & \simeq \bigotimes_{1 \leq i \leq n} k\left[\mathbb{Z} /\left(m_{i}\right)\right] \\
& \simeq \bigotimes_{1 \leq i \leq n} k\left[X_{i}\right] /\left(X_{i}^{m_{i}}-1\right) \\
& \simeq k\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{m_{1}}-1, \ldots, X_{n}^{m_{n}}-1\right) .
\end{aligned}
$$

In the last isomorphism we have used that for all $f \in k[X], g \in k[Y]$ it holds that

$$
k[X] /(f) \otimes k[Y] /(g) \simeq k[X, Y] /(f, g)
$$

To see this, note that the universal property of $k[X, Y]$ yields an algebra homomorphism

$$
\psi: k[X, Y] \rightarrow k[X] /(f) \otimes k[Y] /(g) \quad \text { with } \quad \psi(X)=\bar{X} \otimes 1, \psi(Y)=1 \otimes \bar{Y}
$$

The ideal $(f, g) \subset k[X, Y]$ gets mapped to zero, hence ψ induces an algebra homomorphism

$$
\bar{\psi}: k[X, Y] /(f, g) \rightarrow k[X] /(f) \otimes k[Y] /(g) \quad \text { with } \quad \bar{\psi}(\bar{X})=\bar{X} \otimes 1, \bar{\psi}(\bar{Y})=1 \otimes \bar{Y} .
$$

The map

$$
k[X] /(f) \otimes k[Y] /(g) \simeq k[X, Y] /(f, g), \quad(\bar{p}, \bar{q}) \mapsto \overline{p q}
$$

is well-defined and inverse to ψ.

Exercise 2-Algebras and field extensions

Let $k \subset L$ be a field extension.
a) Let A be a k-algebra. Show that the L-algebra $A \otimes_{k} L$ has dimension

$$
\operatorname{dim}_{L}\left(A \otimes_{k} L\right)=\operatorname{dim}_{k}(A)
$$

Proof. If $\left(a_{i}\right)_{i \in I}$ is a k-basis of A, then $\left(a_{i} \otimes 1\right)_{i \in I}$ is an L-basis of $A \otimes_{k} L$. (It is straight-forward to verify that this family is an L-generating family of $A \otimes_{k} L$ and L-linear independent.
b) Verify that $k[X] \otimes_{k} L \simeq L[X]$ as L-algebras.

Proof. The universal property of the polynomial algebra $L[X]$ yields an L-algebra homomorphism

$$
\varphi: L[X] \rightarrow k[X] \otimes_{k} L \quad \text { with } \quad \varphi(X)=X \otimes 1
$$

The linear map $\psi: k[X] \otimes_{k} L \rightarrow L[X] \quad$ with $\quad \psi(f \otimes x)=f x$ is the inverse of φ.
c) Let $k \subset L$ be a finite Galois extension. Find an explicit description of the L-algebra $L \otimes_{k} L$.

Proof. Since $k \subset L$ is a finite Galois extension it has a primitive element $a \in L$. The irreducible, separable, monic minimal polynomial f of a satisfies

$$
L=k(a) \simeq k[X] /(f)
$$

and hence

$$
\begin{equation*}
L \otimes_{k} L \simeq k[X] /(f) \otimes_{k} L \tag{1}
\end{equation*}
$$

as L-algebras. The sequence

$$
0 \rightarrow(f) \rightarrow k[X] \rightarrow k[X] /(f) \rightarrow 0
$$

is exact. By the exactness of the tensor product, it follows that

$$
0 \rightarrow(f) \otimes_{k} L \rightarrow k[X] \otimes_{k} L \rightarrow k[X] /(f) \otimes_{k} L \rightarrow 0
$$

is exact. Hence

$$
\begin{equation*}
k[X] /(f) \otimes_{k} L \simeq(k[X] \otimes L) /((f) \otimes L) \tag{2}
\end{equation*}
$$

Moreover:

Hence:

$$
\begin{equation*}
(k[X] \otimes L) /((f) \otimes L) \simeq L[X] /(f) \tag{3}
\end{equation*}
$$

Let $n=\operatorname{dim}_{k}(L)$. Since f is separable and monic, we can find n distinct elements $a_{1}, \ldots, a_{n} \in L$ such that $f=\prod_{i=1}^{n}\left(X-a_{i}\right)$ in $L[X]$. Using the Chinese remainder theorem, it follows that

$$
\begin{equation*}
L[X] /(f) \simeq L[X] /\left(\prod_{i=1}^{n}\left(X-a_{i}\right)\right) \simeq \prod_{i=1}^{n} L[X] /\left(X-a_{i}\right) \simeq L^{n} \tag{4}
\end{equation*}
$$

Thus

$$
L \otimes_{k} L \simeq L^{n}
$$

Exercise 3 - Morita equivalence

a) Let R be a ring and $S=M_{n}(R)$ the ring of $n \times n$ matrices with coefficients in R. Let P be the space of all matrices in $M_{n}(R)$ with the property, that the coefficients in the rows $2, \ldots, n$ are equal to zero. Let Q be the space of all matrices in $M_{n}(R)$ with the property, that the coefficients in the columns $2, \ldots, n$ are equal to zero. Show that

$$
P \otimes_{S} Q \simeq R \text { in }{ }_{R} \mathcal{M}_{R} \quad \text { and } \quad Q \otimes_{R} P \simeq S \text { in }{ }_{S} \mathcal{M}_{S} .
$$

Proof. Let p_{11} be the projection that sends a matrix to its coefficient in the first row and first column. Then

$$
P \times Q \rightarrow R, \quad(A, B) \rightarrow p_{11}(A B)
$$

is $M_{n}(R)$ middle-linear. The induced additive map

$$
f: P \otimes_{S} Q \rightarrow R
$$

is (R, R)-linear. f is clearly surjective. It is also injective, because if $t=\sum_{i} A_{i} \otimes B_{i} \in$ $\operatorname{ker}(f)$ then

$$
t=\sum_{i} A_{i} \otimes B_{i}=\left(\sum_{i} A_{i} B_{i}\right) \otimes I=0 .
$$

Hence f is an isomorphism.
The multiplication

$$
Q \times P \rightarrow S, \quad(A, B) \rightarrow A B
$$

is clearly R middle-linear. The induced map

$$
g: Q \otimes_{R} P \rightarrow S
$$

is (S, S)-linear. For all $1 \leq i, j \leq n$ let $I_{i, j}$ denote the matrix with the coefficient in the i-th row and j-th column being equal to 1 and the remaining coefficients being equal to 0 . Then $Q \otimes_{R} P$ has the basis $\left(E_{i, 1} \otimes E_{1, j}\right)_{1 \leq i, j \leq n}$ and g maps this basis to the basis $\left(E_{i, j}\right)_{i, j}$ of S. Hence g is an isomorphism.
b) Let R, S be rings, P an (R, S)-bimodule, Q an (S, R)-bimodule. Suppose that

$$
P \otimes_{S} Q \simeq R \text { in }{ }_{R} \mathcal{M}_{R} \quad \text { and } \quad Q \otimes_{R} P \simeq S \text { in }{ }_{S} \mathcal{M}_{S}
$$

Show that the functor $Q \otimes_{R}-:{ }_{R} \mathcal{M} \rightarrow{ }_{S} \mathcal{M}$ and $P \otimes_{S}-:{ }_{S} \mathcal{M} \rightarrow{ }_{R} \mathcal{M}$ are quasi-inverse equivalences of categories.

Proof. Let $\varphi: R \rightarrow P \otimes_{S} Q$ in ${ }_{R} \mathcal{M}_{R}$ and $\psi: S \rightarrow Q \otimes_{R} P$ in ${ }_{S} \mathcal{M}_{S}$. Let $f: V \rightarrow W$ be a morphism in ${ }_{R} \mathcal{M}$. Then

Hence $F=Q \otimes_{R}-$ and $G=P \otimes_{S}-$ satisfy $G F \simeq \mathrm{id}_{R \mathcal{M}}$. Analogously we may show that $F G \simeq \operatorname{id}_{S \mathcal{M}}$

Applications: Equivalences of categories preserve category theoretic notions such as coproducts. For example, if $R=k$ is a field, then there is exists a module $U \in{ }_{k} \mathcal{M}$ such that for all $V \in{ }_{k} \mathcal{M}$ there is an index set I such that $V \simeq \coprod_{i \in I} U$. Since ${ }_{k} \mathcal{M} \simeq{ }_{M_{n}(k)} \mathcal{M}$ an analogous statement holds for left modules over $M_{n}(k)$.

Exercise 4 - Exact functors

Let R and S be rings. A covariant functor $F:{ }_{R} \mathcal{M} \rightarrow{ }_{S} \mathcal{M}$ is termed left exact, if for any exact sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C$ in ${ }_{R} \mathcal{M}$ the sequence

$$
0 \rightarrow F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C)
$$

is exact as well. It is termed right-exact, if for any exact sequence $A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ the sequence

$$
F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C) \rightarrow 0
$$

is exact as well. We say F is exact, if it is both left- and right-exact. A contravariant functor $F:{ }_{R} \mathcal{M} \rightarrow{ }_{S} \mathcal{M}$ is left-exact, if for any exact sequence $0 \rightarrow C^{\text {op }} \xrightarrow{g^{\mathrm{op}}} B^{\mathrm{op}} \xrightarrow{f^{\mathrm{op}}} A^{\mathrm{op}}$ in ${ }_{R} \mathcal{M}^{\mathrm{op}}$ the sequence

$$
0 \rightarrow F(C) \xrightarrow{F(g)} F(B) \xrightarrow{F(f)} F(A)
$$

is exact. We have seen that for all left R-modules M, N the functors $\operatorname{Hom}(M,-)$ and $\operatorname{Hom}(-, N)$ are left-exact.
a) Let $X \xrightarrow{f} Y$ and $Y \xrightarrow{g} Z$ be group homomorphisms of abelian groups. Show that if

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{Z}}(Z, A) \xrightarrow{\operatorname{Hom}(g, \mathrm{id})} \operatorname{Hom}_{\mathbb{Z}}(Y, A) \xrightarrow{\operatorname{Hom}(f, \mathrm{id})} \operatorname{Hom}_{\mathbb{Z}}(X, A)
$$

is exact for every abelian group A, then

$$
X \xrightarrow{f} Y \xrightarrow{g} Z \rightarrow 0
$$

is exact as well.
Proof. Let $\tilde{g}=\operatorname{Hom}(g, \mathrm{id})$ and $\tilde{f}=\operatorname{Hom}(f, \mathrm{id})$.
In the special case $A=Z$, it follows that $\tilde{f}\left(\tilde{g}\left(\mathrm{id}_{Z}\right)\right)=0$. That is $g f=0$ and hence $\operatorname{im}(f) \subset \operatorname{ker}(g)$.
In the special case $A=Y / \operatorname{im}(f)$ it holds that $\operatorname{can}_{2}: Y \rightarrow Y / \operatorname{im}(f)$ satisfies $\tilde{f}\left(\operatorname{can}_{2}\right)=$ 0. As $\operatorname{ker}(\tilde{f})=\operatorname{im}(\tilde{g})$ there is a morphism $h: Z \rightarrow Y / \operatorname{im}(f)$ with $h g=\operatorname{can}_{2}$. In particular $\operatorname{ker}(h g)=\operatorname{ker}\left(\operatorname{can}_{2}\right)=\operatorname{im}(f)$. This implies $\operatorname{ker}(g) \subset \operatorname{im}(f)$.
In the special case $A=Z / \operatorname{im}(g)$ it holds that $\operatorname{can}_{1}: Z \rightarrow Z / \operatorname{im}(g)$ satisfies $\tilde{g}\left(\operatorname{can}_{1}\right)=0$. As \tilde{g} is injective, it follows that $\operatorname{can}_{1}=0$. That is, $\operatorname{im}(g)=Z$.
b) Let R and S be rings, and let ${ }_{R} X_{S}$ be an (R, X)-bimodule. Recall that the functor

$$
{ }_{R} X_{S} \otimes_{S}-:{ }_{S} \mathcal{M} \rightarrow{ }_{R} \mathcal{M}
$$

is left adjoint to

$$
\operatorname{Hom}_{R}\left({ }_{R} X_{S},-\right):{ }_{R} \mathcal{M} \rightarrow{ }_{S} \mathcal{M}
$$

Combine this fact with a) to deduce that for any right R-module M_{R} the functor

$$
M \otimes_{R}-:{ }_{R} \mathcal{M} \rightarrow{ }_{\mathbb{Z}} \mathcal{M}
$$

is right-exact.

Proof. Let $N_{1} \xrightarrow{f} N_{2} \xrightarrow{g} N_{3} \rightarrow 0$ be an exact sequence in ${ }_{R} \mathcal{M}$. Let A be an arbitrary abelian group. Since $M \otimes_{R}$ - is left-adjoint to $\operatorname{Hom}_{R}(M,-)$, it follows that:

The right-column is exact because the functor $\operatorname{Hom}_{R}\left(-, \operatorname{Hom}_{\mathbb{Z}}(M, A)\right)$ is left-exact. It follows that the left column is exact. As this holds for arbitrary abelian groups A, it follows from a) that

$$
M \otimes_{R} N_{1} \xrightarrow{\text { id } \otimes f} M \otimes_{R} N_{2} \xrightarrow{\text { id } \otimes g} M \otimes_{R} N_{3} \rightarrow 0
$$

is exact.
c) An R-module M is termed free, if there is an index set I with $M \simeq R^{(I)} . M$ is termed projective if there is an R-module N such that $M \oplus N$ is free. Show that if M is a projective right R-module, then the functor $M \otimes_{R}$ - is exact.

Comment: It is clear that the same holds also for the functor $-\otimes_{R} N$ if N is a projective left R-module. In particular, the tensor product over a skew field is always exact.

Proof. It remains to verify that $M \otimes_{R}$ - is left-exact. Let us first consider the case where M is free. That is, without loss of generality we may assume that $M=R^{(I)}=\coprod_{i \in I} R_{i}$ with $R_{i}=R$. Let

$$
0 \rightarrow N_{1} \xrightarrow{f} N_{2} \xrightarrow{g} N_{3}
$$

be an exact sequence of left R-modules. Then for all $i \in I$:

Hence

$$
0 \longrightarrow M \otimes_{R} N_{1} \xrightarrow{\text { id } \otimes f} M \otimes_{R} N_{2} \xrightarrow{\text { id } \otimes g} M \otimes_{R} N_{3}
$$

is exact.
It remains to consider the projective case. Suppose that $M \oplus M^{\prime}$ is free. It follows that $M \otimes_{R} N_{i} \rightarrow\left(M \oplus M^{\prime}\right) \otimes_{R} N_{i}$ is injective. (Here we really need to use that $M \oplus M^{\prime}$ is free. The fact that $M \subset M \oplus M^{\prime}$ is a submodule is not enough.) The exactness of the first row in

implies the exactness of the second row.

