
Homework Assignment 3 - Coalgebras

Hopf algebras - Spring Semester 2018

Exercise 1 - Examples for duals of coalgebras

a) Recall that if S is a set, then k(S) is a coalgebra with ∆(s) = s⊗ s and ε(s) = 1 for all
s ∈ S. Show that if S is finite, then (k(S))∗ ' kS as k-algebras.

Hint: Let (e∗s)s∈S be the dual basis of (s)s∈S. Then ϕ : (k(S))∗ → kS with ϕ(e∗s) =
(es(h))h∈S is an algebra isomorphism.

b) Let C be a vector space over the field k with basis (xi,j)1≤i,j≤n. We saw in the lecture
that C is a coalgebra with ∆(xi,j) =

∑n
k=1 xi,k ⊗ xk,j, ε(xi,j) = δi,j. Show that C∗ '

Mn(k) as k-algebras.

c) Let C be a vector space over k with basis (xi)i≥0. We saw in the lecture that C is
a coalgebra with ∆(xn) =

∑n
i=0 xi ⊗ xn−i and ε(xn) = δ0,n. Show that its dual C∗ is

isomorphic to the power series algebra k[[T ]] in one indeterminate.

Proof. We will present the product structure in the dual algebra. Recall that the unit in C∗

for a coalgebra C is the counit ε ∈ C∗. That the product structure is preserved by the given
isomorphisms is elementary.

a) The map in the hint sends a basis set to a basis set, so it’s an isomorphism of vector
spaces. The multiplication in (k(S))∗ is as follows in the basis elements:

e∗s1e
∗
s2

= es1δs1,s2 .

It’s immediate that the algebra structure is preserved.

b) Take the dual basis {x∗i,j|1 ≤ i, j ≤ n} and map x∗i,j 7→ Ei,j to the matrix with only
one non-zero entry, the entry (Ei,j)i,j = 1. The multiplication structure in C∗ is given
in the basis elements by :

x∗i1,j1x
∗
i2,j2

= δi2, j1x
∗
i1,j2

.

It’s immediate that the algebra structure is preserved.

c) If f ∈ C∗ such that f(xi) = ai, then define φ(f) =
∑

i≥0 aiT
i. The product of two

elements f1, f2 ∈ C∗ is a map defined on the basis elements as:

f1f2(xi) =
∑
a+b=i

f1(xa)f2(xb) .

It is immediate that this preserves the algebra structure.
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Exercise 2 - Coalgebra filtrations

Let (C,∆, ε) be a coalgebra. A family (Cn)n≥0 of subset Cn ⊂ C is a coalgebra filtration, if
C =

⋃
n≥0Cn, Cn ⊂ Cn+1 and ∆(x) ∈

∑
i+j=nCi ⊗ Cj for all n ≥ 0 and x ∈ Cn. Note that

this implies that C0 ⊂ C is a subcoalgebra.
Let (C,∆, ε) be a k-coalgebra with filtration (Cn)n≥0 and let (A, µ, η) be a k-algebra.

Show that an element f of the algebra Hom(C,A) is ∗-invertible, if and only if its restriction
f |C0 : C0 → A is ∗-invertible in the algebra Hom(C0, A). Hints:

a) Let g : C → A be a k-linear map such that the restriction g|C0 : C0 → A is ∗-inverse
to f |C0 . Verify that ψ := η ◦ ε− g ∗ f ∈ Hom(C,A) satisfies ψ∗n(Ck) = 0 for k < n.

b) We let ψi denote the ith power of the element ψ of the algebra Hom(C,A), and use the
convention that ψ0 = η ◦ ε. Show that φ :=

∑
n≥0 ψ

n ∈ Hom(C,A) is a well-defined
linear map.

c) Show that φ is ∗-inverse to g ∗ f .

Proof. a) First we pick an extension of g from C|0 to C. This is possible because over
vector spaces we can pick a basis in C|0 and extend such basis to C. Now suppose that
x ∈ Cm, so by the filtration property we have that

∆(n−1)x ∈
∑

a1+···+an=m

Ca1 ⊗ · · · ⊗ Can .

From a1 + · · · + an = k we have immediately that ai = 0 for some i. However, ψ is
clearly zero in C|0 (because g is the inverse of f in C|0), so ψn is zero in∑

a1+···+an=k

Ca1 ⊗ · · · ⊗ Can .

It implies that ψn(x) = µ(n−1) ◦ ψ⊗n ◦∆(n−1)x = 0, as desired.

b) From the previous item, φ is a k-linear map in each C|n, so it is also k-linear in the
linear span.

c) Just note that

φ ∗ g ∗ f = φ ∗ ψ − φ ∗ (η ◦ ε) = φ ∗ ψ − φ =
∑
n≥0

ψ∗n −
∑
n≥1

ψ∗n = η ◦ ε .

We conclude that f is invertible on both sides, so it is invertible.
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Exercise 3 - An application of Dedekind’s Lemma

Let k be a field that contains a primitive nth root of unity ζ. Let G be a finite cyclic group
or order n. Recall that the group algebra k[G] is an algebra with basis (g)g∈G that is also a
coalgebra with ∆(g) = g ⊗ g and ε(g) = 1 for all g ∈ G. Show that there is a vector space
isomorphism ϕ : k[G]→ k[G]∗ that preserves both the coalgebra and algebra structures.

Hint: Use ζ to determine the group-like elements of k[G]∗.

Proof. Write G = {0, 1, · · · , n− 1}. Recall that the algebra structure in k[G]∗ is given in the
dual basis as g∗1g

∗
2 = δg1,g2g

∗
1, and the coalgebra structure is given by ∆g∗ =

∑
g=h1h2

h∗1⊗h∗2.
Take a generic element f =

∑
g∈G agg

∗ ∈ k[G]∗.
We see that f is a group like element if and only if there is an integer k0 such that

am̄ = ζkm. Indeed, since ε(f) = a0̄ and ∆(f) =
∑

h1,h2
ah1h2h

∗
1 ⊗ h∗2, f is group-like if and

only if
am̄ = am1̄ and a0̄ = 1 .

So, a1̄ is a root of unity, say ζk, and the group-like elements are of the form

f =
n−1∑
m=0

ζmkm̄∗ ∈ k[G]∗ .

It can then be seen that k[G] and k[G]∗ have the same group structure on the group-like
elements, so it generates isomorphic coalgebras. By Dedekind’s Lemma and a dimension
argument, the group-like elements are linearly independent, so they form a basis, and the
bialgebras k[G] and k[G]∗ are isomorphic.

Exercise 4 - Examples of adjoint functors

a) Let R be a ring, and consider Fo : MR → Set the forgetful functor that sends an
R-module to its underlying set. Find a functor F that is left-adjoint to Fo.

b) Let M2
Z be the category of ordered pairs of abelian groups with componentwise mor-

phisms. Let ⊕ :M2
Z →MZ be the functor that maps a pair (X, Y ) to its direct sum

X ⊕ Y . Find a functor H such that ⊕ is left-adjoint to H.

Proof. We present the adjoint functors and the proof of the adjoincy is elementary.

a) The functor G is the free functor, i.e. G(A) = AR is the free R-module with basis
{a ∈ A}.

b) The functor H is the diagonal functor H(A) = (A,A).
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Exercise 5 - Uniqueness of adjoint functors

Let F : C → D and G1, G2 : D → C be functors such that F is left-adjoint to both G1 and
G2. Show that there is a natural isomorphism between G1 and G2, that is for each object
D in D we have an isomorphism φD such that the following commutes for any morphism
f : D1 → D2:

G1(D1) G2(D1)

G1(D2) G2(D2)

φD1

G1(f) G2(f)

φD2

(1)

Dually, if F1, F2 : C → D are both left-adjoint to G : D → C it holds that there is a
natural isomorphism between F1, F2.

Hint: Yoneda’s Lemma

Proof. The natural isomorphism Hom(A,G1(B)) ' Hom(F (A), B) ' Hom(A,G2(B)) gives
a natural isomorphism G1(B) ' G2(B) from Yoneda’s lemma.
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