Homework Assignment 4 - Bialgebras and Hopf algebras

Hopf algebras - Spring Semester 2018

Exercise 1

Fix $n \ge 0$ and for an algebra A consider the functor $O_n(A) := \{M \in M_n(A) | MM^T = Id\}$. Find a commutative Hopf algebra H_n such that we have the natural isomorphism

$$O_n(-) \simeq Alg_k(H,-)$$
.

Proof. Take $H_n = k[(T_{i,j})_{1 \le i,j \le n} \mid (T_{i,j})_{i,j}(T_{j,i})_{i,j} = I]$ with $\Delta(T_{i,j}) = \sum_{\ell} T_{i,\ell} \otimes T_{\ell,j}$ and $\epsilon(T_{i,j}) = \delta_{i,j}$.

Exercise 2

a) Let $A \subset B$ be k-algebras, and let A^{\times}, B^{\times} the sets of invertible elements in the respective algebras.

Suppose that A is finite dimensional. Show that $A^{\times} = B^{\times} \cap A$.

b) Suppose that $H \subset B$ are bialgebras over k, H is a Hopf algebra and B finite dimensional.

Then B is a Hopf algebra.

c) Suppose that H, B are bialgebras over k, H is a Hopf algebra and B finite dimensional. Suppose that there is a surjective map $\phi : H \to B$.

Then B is a Hopf algebra.

Proof. a) Clearly $A^{\times} \subset B^{\times} \cap A$. Take now an element $a \in B^{\times} \cap A$ and consider the isomorphism $\phi : B \to B$ given by $\phi : x \mapsto ax$.

We have $\phi(A) \subset A$, and $\phi|_A$ is injective. By a dimension argument, $\phi(A) = A$, so in particular, $\exists b \in A$ s.t. ab = 1, so $a \in A^{\times}$, as desired.

b) We just need to find an antipode in B. Take the antipode $s : H \to H$ in the Hopf algebra H, and the inclusion $\iota : B \to H$. Since $\operatorname{Hom}_k(\iota, H) : \operatorname{Hom}_k(H, H) \to \operatorname{Hom}_k(B, H)$ is an algebra homomorphism, $\iota = \operatorname{Hom}_k(\iota, H)(\operatorname{id}_H)$ and $\iota \circ s = \operatorname{Hom}_k(\iota, H)(s)$ are *-inverses in the k-algebra $\operatorname{Hom}_k(B, H)$.

Now $\operatorname{Hom}_k(B, B)$ is identified with a finite dimensional subalgebra of $\operatorname{Hom}_k(B, H)$, where $\operatorname{id}_B = \iota \in \operatorname{Hom}_k(B, H) \times \cap \operatorname{Hom}_k(B, B)$. By the previous exercise, id_B is invertible in $\operatorname{Hom}_k(B, B)$, and B is a Hopf algebra.

c) Again we need only to find an antipode in B.

The map ϕ is surjective, hence $\operatorname{Hom}_k(\phi, B)$ is an injective algebra homomorphism, so we can identify $\operatorname{Hom}_k(B, B) \subset \operatorname{Hom}_k(H, B)$. Note that $\phi = \operatorname{Hom}_k(\phi, B)(\operatorname{id}_B)$, so $\phi \in \operatorname{Hom}_k(B, B)$.

As in the previous exercise, ϕ is invertible in $\operatorname{Hom}_k(B, H)$ and its inverse is given as $\operatorname{Hom}_k(H, \phi)(s) = \phi \circ s$. So $\phi \in \operatorname{Hom}_k(B, H)^{\times} \cap \operatorname{Hom}_k(B, B) = \operatorname{Hom}_k(B, B)^{\times}$ by exercise a), as desired.

Exercise 3 - Kernel of counit

Suppose that B is a bialgebra, and denote $B^+ = \ker(\epsilon)$ the augmentation ideal. Show that if $x \in B^+$, then

$$\Delta(x) \in x \otimes 1 + 1 \otimes x + H^+ \otimes H^+$$

Proof. It is easy to see that $\Delta(x) - 1 \otimes x - x \otimes 1$ is in the kernel of the maps $\epsilon \otimes id_H$ and $id_H \otimes \epsilon$, by using the counit property and that $\epsilon(x) = 0$.

Now the following is exact

$$0 \to B^+ \to B \xrightarrow{\epsilon} k \to 0,$$

so tensoring with H along the sequence in each side we obtain that $\ker(\epsilon \otimes \operatorname{id}_B) = B^+ \otimes B$ and that $\ker(\operatorname{id}_B \otimes \epsilon) = B \otimes B^+$.

So $\Delta(x) - 1 \otimes x - x \otimes 1 \in (B^+ \otimes B) \cap (B \otimes B^+) = B^+ \otimes B^+$ holds in vector spaces, as desired.

Exercise 4 - Dedekind's argument

Take a bialebra B and $x \in B$ a non-zero primitive element, i.e. $\Delta x = a \otimes x + x \otimes 1$. Suppose that char(k) = 0. Show that $\{1, x, x^2, ...\}$ in l.i.

Proof. Suppose that $\sum_{k=0}^{n} p_k x^k = 0$ such that $p_n \neq 0$, and suppose that n is minimal in this way. Note that since $x \neq 0$, we have that $n \geq 2$. In particular, $1, x, \dots, x^{n-1}$ from a linearly independent set. Consequently, $\{x^r \otimes x^s\}_{0 \le r,s,\le n-1}$ is a linearly independent set. So, from $\Delta x = 1 \otimes x + x \otimes 1$ we see that $\Delta x^k = \sum_{r+s=k} {k \choose r} x^r \otimes x^s$, and consequently:

$$0 \otimes 0 = \Delta \left(\sum_{k=0}^{n} p_k x^k\right) = \sum_{k=0}^{n} p_k \sum_{r+s=k} \binom{k}{r} x^r \otimes x^s$$

$$= 1 \otimes x^n + x^n \otimes 1 \sum_{k=0}^{n} p_k \sum_{\substack{r+s=k\\r,s

$$= 1 \otimes \left(\sum_{k=0}^{n-1} -\frac{p_k}{p_n} x^k\right) + \left(\sum_{k=0}^{n-1} -\frac{p_k}{p_n} x^k\right) \otimes 1 + \sum_{k=0}^{n} p_k \sum_{\substack{r+s=k\\r,s

$$= \left(\sum_{k=0}^{n-1} -\frac{p_k}{p_n} 1 \otimes x^k - \frac{p_k}{p_n} x^k \otimes 1\right) + \sum_{k=0}^{n} p_k \sum_{\substack{r+s=k\\r,s
(3)$$$$$$

This contradicts the linear independence of $\{x^r \otimes x^s\}_{0 \leq r,s,\leq n-1}$, and we conclude that $\{x^n\}_{n\geq 0}$ form a linear independent set.

Exercise 5 - Primitive elements

For a Hopf algebra H, let $P(H) = \{x \in H | \Delta x = 1 \otimes x + x \otimes 1\}$ be the set of primitive elements.

- a) Suppose that G is a group, and take the Hopf algebra H = k[G], where $\Delta(g) = g \otimes g$. Then P(H) = 0.
- b) If G is a finite group, then $P(k^G) = \text{Hom}_{Ab}(G, k)$.
- c) For a variable T, compute P(k[T]) for char k = 0 and char k = p > 0.
- a) Take a generic element $x = \sum_{g \in G} a_g g$ such that $\Delta x = 1 \otimes x + x \otimes 1$. Recall Proof. that $1 = \mathrm{id}_G$.

Note that

$$1 \otimes x + x \otimes 1 = \sum_{g \in G} a_g (\mathrm{id}_{\otimes} g + g \otimes \mathrm{id}_G)$$

$$\Delta(x) = \sum_{g,h \in G} a_g g \otimes g.$$
(4)

So, by linear independence of $\{g \otimes h\}_{g,h \in G}$ we obtain that $a_g = 0$ for every $g \neq id_G$, and $a_{\mathrm{id}_G} = 2a_{\mathrm{id}_G}$. Hence, x = 0 and P(H) = 0 is the zero vector space.

b) We have that x is primitive if and only if

$$\Delta(x)(g\otimes h) = (1\otimes x + x\otimes 1)(g\otimes h) \; \forall g,h \in G$$

or equivalently, if and only of

$$x(gh) = x(g) + x(h) \,,$$

i.e., if and only if x is a group homomorphism.

c) First, note that $\Delta T = 1 \otimes T + T \otimes 1$, so $T \in P(k[T])$. Suppose that $x = \sum_{n=0}^{m} a_n T^n$. Note that:

$$1 \otimes x + x \otimes 1 = 2a_0 1 \otimes 1 + \sum_{n=1}^m a_n T^n \otimes 1 + \sum_{n=1}^m a_n 1 \otimes T^n$$

$$\Delta(x) = \sum_{0 \le r, s \le m} a_{r+s} \binom{r+s}{r} T^r \otimes T^s.$$
(5)

By linear independence, we obtain that x is primitive if and only if

$$2a_0 = a_0$$

$$a_n = \binom{n}{0} a_n \ \forall n > 0$$

$$0 = \binom{r+s}{r} a_{r+s} \ \forall r, s > 0.$$
(6)

This readily implies that $a_0 = 0$. Now we study two cases separately: call $p = \operatorname{char} k$.

- (a) Case p = 0: If p = 0 then $0 = \binom{r+s}{r}a_{r+s} \Rightarrow a_{r+s} = 0$, so we obtain that $a_n = 0$ for each $n \ge 2$. Consequently, $P(k[T]) = \text{span } \{T\}$.
- (b) Case p > 0 prime number: If p > 0 then we only have $0 = \binom{r+s}{r} p_{r+s} \Rightarrow a_{r+s} = 0$ whenever $\binom{r+s}{r}$ is not a multiple of p. If n is not a power of p, take $r = p^k$ the biggest power of p smaller than n, and s = n - r. Then it follows from Kummer's theorem that $\binom{n}{r}$ is not a multiple of p, and so $a_n = 0$. Also, if $n = p^k$ is a power of p, then, from Kummer's theorem, $\binom{n}{s}$ is a multiple of p for every positive s < n. We conclude that T^n is a primitive element of k[T], and so we conclude that

$$P(k[T]) = \operatorname{span} \{T^n | n \text{ is a power of } p\}.$$