
Homework Assignment 4 - Bialgebras and Hopf algebras

Hopf algebras - Spring Semester 2018

Exercise 1

Fix n ≥ 0 and for an algebra A consider the functor On(A) := {M ∈ Mn(A)|MMT = Id}.
Find a commutative Hopf algebra Hn such that we have the natural isomorphism

On(−) ' Algk(H,−) .

Proof. Take Hn = k[(Ti,j)1≤i,j≤n | (Ti,j)i,j(Tj,i)i,j = I] with ∆(Ti,j) =
∑

` Ti,` ⊗ T`,j and
ε(Ti,j) = δi,j.

Exercise 2

a) Let A ⊂ B be k-algebras, and let A×, B× the sets of invertible elements in the respective
algebras.

Suppose that A is finite dimensional. Show that A× = B× ∩ A.

b) Suppose that H ⊂ B are bialgebras over k, H is a Hopf algebra and B finite dimen-
sional.

Then B is a Hopf algebra.

c) Suppose that H,B are bialgebras over k, H is a Hopf algebra and B finite dimensional.
Suppose that there is a surjective map φ : H → B.

Then B is a Hopf algebra.

Proof. a) Clearly A× ⊂ B× ∩ A. Take now an element a ∈ B× ∩ A and consider the
isomorphism φ : B → B given by φ : x 7→ ax.

We have φ(A) ⊂ A, and φ|A is injective. By a dimension argument, φ(A) = A, so in
particular, ∃b ∈ A s.t. ab = 1, so a ∈ A×, as desired.

b) We just need to find an antipode in B. Take the antipode s : H → H in the Hopf alge-
bra H, and the inclusion ι : B → H. Since Homk(ι,H) : Homk(H,H)→ Homk(B,H)
is an algebra homomorphism, ι = Homk(ι,H)(idH) and ι ◦ s = Homk(ι,H)(s) are
*-inverses in the k-algebra Homk(B,H).
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Homk(H,H) idH

Homk(B,B) Homk(B,H)

idB ι ∈ Homk(B,H)

Homk(ι,H)

Homk(B,ι) (1)

Now Homk(B,B) is identified with a finite dimensional subalgebra of Homk(B,H),
where idB = ι ∈ Homk(B,H)×∩Homk(B,B). By the previous exercise, idB is invert-
ible in Homk(B,B), and B is a Hopf algebra.

c) Again we need only to find an antipode in B.

The map φ is surjective, hence Homk(φ,B) is an injective algebra homomorphism,
so we can identify Homk(B,B) ⊂ Homk(H,B). Note that φ = Homk(φ,B)(idB), so
φ ∈ Homk(B,B).

Homk(H,H) idH

Homk(B,B) Homk(H,B)

idB φ ∈ Homk(B,H)

Homk(H,φ)

Homk(φ,B) (2)

As in the previous exercise, φ is invertible in Homk(B,H) and its inverse is given
as Homk(H,φ)(s) = φ ◦ s. So φ ∈ Homk(B,H)× ∩ Homk(B,B) = Homk(B,B)× by
exercise a), as desired.

Exercise 3 - Kernel of counit

Suppose that B is a bialgebra, and denote B+ = ker(ε) the augmentation ideal. Show that
if x ∈ B+, then

∆(x) ∈ x⊗ 1 + 1⊗ x+H+ ⊗H+ .

Proof. It is easy to see that ∆(x) − 1 ⊗ x − x ⊗ 1 is in the kernel of the maps ε ⊗ idH and
idH ⊗ε, by using the counit property and that ε(x) = 0.

Now the following is exact

0→ B+ → B
ε−→ k → 0 ,

so tensoring with H along the sequence in each side we obtain that ker(ε⊗ idB) = B+ ⊗ B
and that ker(idB ⊗ε) = B ⊗B+.

So ∆(x)− 1⊗ x− x⊗ 1 ∈ (B+ ⊗ B) ∩ (B ⊗ B+) = B+ ⊗ B+ holds in vector spaces, as
desired.
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Exercise 4 - Dedekind’s argument

Take a bialebra B and x ∈ B a non-zero primitive element, i.e. ∆x = a⊗ x+ x⊗ 1.
Suppose that char(k) = 0. Show that {1, x, x2, . . . } in l.i.

Proof. Suppose that
∑n

k=0 pkx
k = 0 such that pn 6= 0, and suppose that n is minimal in this

way. Note that since x 6= 0, we have that n ≥ 2. In particular, 1, x, · · · , xn−1 from a linearly
independent set. Consequently, {xr ⊗ xs}0≤r,s,≤n−1 is a linearly independent set.

So, from ∆x = 1⊗ x+ x⊗ 1 we see that ∆xk =
∑

r+s=k

(
k
r

)
xr ⊗ xs, and consequently:

0⊗ 0 =∆(
n∑
k=0

pkx
k) =

n∑
k=0

pk
∑
r+s=k

(
k

r

)
xr ⊗ xs

=1⊗ xn + xn ⊗ 1
n∑
k=0

pk
∑
r+s=k
r,s<n

(
k

r

)
xr ⊗ xs

=1⊗

(
n−1∑
k=0

−pk
pn
xk

)
+

(
n−1∑
k=0

−pk
pn
xk

)
⊗ 1 +

n∑
k=0

pk
∑
r+s=k
r,s<n

(
k

r

)
xr ⊗ xs

=

(
n−1∑
k=0

−pk
pn

1⊗ xk − pk
pn
xk ⊗ 1

)
+

n∑
k=0

pk
∑
r+s=k
r,s<n

(
k

r

)
xr ⊗ xs .

(3)

This contradicts the linear independence of {xr ⊗ xs}0≤r,s,≤n−1, and we conclude that
{xn}n≥0 form a linear independent set.

Exercise 5 - Primitive elements

For a Hopf algebra H, let P (H) = {x ∈ H|∆x = 1 ⊗ x + x ⊗ 1} be the set of primitive
elements.

a) Suppose that G is a group, and take the Hopf algebra H = k[G], where ∆(g) = g ⊗ g.
Then P (H) = 0.

b) If G is a finite group, then P (kG) = HomAb(G, k).

c) For a variable T , compute P (k[T ]) for char k = 0 and char k = p > 0.

Proof. a) Take a generic element x =
∑

g∈G agg such that ∆x = 1 ⊗ x + x ⊗ 1. Recall
that 1 = idG.

Note that

1⊗ x+ x⊗ 1 =
∑
g∈G

ag(id⊗ g + g ⊗ idG)

∆(x) =
∑
g,h∈G

agg ⊗ g .

(4)
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So, by linear independence of {g ⊗ h}g,h∈G we obtain that ag = 0 for every g 6= idG,
and aidG = 2aidG . Hence, x = 0 and P (H) = 0 is the zero vector space.

b) We have that x is primitive if and only if

∆(x)(g ⊗ h) = (1⊗ x+ x⊗ 1)(g ⊗ h) ∀g, h ∈ G ,

or equivalently, if and only of

x(gh) = x(g) + x(h) ,

i.e., if and only if x is a group homomorphism.

c) First, note that ∆T = 1⊗ T + T ⊗ 1, so T ∈ P (k[T ]). Suppose that x =
∑m

n=0 anT
n.

Note that:

1⊗ x+ x⊗ 1 =2a01⊗ 1 +
m∑
n=1

anT
n ⊗ 1 +

m∑
n=1

an1⊗ T n

∆(x) =
∑

0≤r,s≤m

ar+s

(
r + s

r

)
T r ⊗ T s .

(5)

By linear independence, we obtain that x is primitive if and only if

2a0 =a0

an =

(
n

0

)
an ∀n > 0

0 =

(
r + s

r

)
ar+s ∀r, s > 0 .

(6)

This readily implies that a0 = 0. Now we study two cases separately: call p = char k.

(a) Case p = 0: If p = 0 then 0 =
(
r+s
r

)
ar+s ⇒ ar+s = 0, so we obtain that an = 0

for each n ≥ 2. Consequently, P (k[T ]) = span {T}.
(b) Case p > 0 prime number: If p > 0 then we only have 0 =

(
r+s
r

)
pr+s ⇒ ar+s = 0

whenever
(
r+s
r

)
is not a multiple of p.

If n is not a power of p, take r = pk the biggest power of p smaller than n, and
s = n− r. Then it follows from Kummer’s theorem that

(
n
r

)
is not a multiple of

p, and so an = 0.

Also, if n = pk is a power of p, then, from Kummer’s theorem,
(
n
s

)
is a multiple

of p for every positive s < n. We conclude that T n is a primitive element of k[T ],
and so we conclude that

P (k[T ]) = span {T n|n is a power of p} .
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