Homework Assignment 4 - Bialgebras and Hopf algebras

Hopf algebras - Spring Semester 2018

Exercise 1

Fix $n \geq 0$ and for an algebra A consider the functor $O_{n}(A):=\left\{M \in M_{n}(A) \mid M M^{T}=I d\right\}$. Find a commutative Hopf algebra H_{n} such that we have the natural isomorphism

$$
O_{n}(-) \simeq \operatorname{Alg} g_{k}(H,-)
$$

Proof. Take $H_{n}=k\left[\left(T_{i, j}\right)_{1 \leq i, j \leq n} \mid\left(T_{i, j}\right)_{i, j}\left(T_{j, i}\right)_{i, j}=I\right]$ with $\Delta\left(T_{i, j}\right)=\sum_{\ell} T_{i, \ell} \otimes T_{\ell, j}$ and $\epsilon\left(T_{i, j}\right)=\delta_{i, j}$.

Exercise 2

a) Let $A \subset B$ be k-algebras, and let A^{\times}, B^{\times}the sets of invertible elements in the respective algebras.
Suppose that A is finite dimensional. Show that $A^{\times}=B^{\times} \cap A$.
b) Suppose that $H \subset B$ are bialgebras over k, H is a Hopf algebra and B finite dimensional.
Then B is a Hopf algebra.
c) Suppose that H, B are bialgebras over k, H is a Hopf algebra and B finite dimensional. Suppose that there is a surjective map $\phi: H \rightarrow B$.

Then B is a Hopf algebra.
Proof. a) Clearly $A^{\times} \subset B^{\times} \cap A$. Take now an element $a \in B^{\times} \cap A$ and consider the isomorphism $\phi: B \rightarrow B$ given by $\phi: x \mapsto a x$.
We have $\phi(A) \subset A$, and $\left.\phi\right|_{A}$ is injective. By a dimension argument, $\phi(A)=A$, so in particular, $\exists b \in A$ s.t. $a b=1$, so $a \in A^{\times}$, as desired.
b) We just need to find an antipode in B. Take the antipode $s: H \rightarrow H$ in the Hopf algebra H, and the inclusion $\iota: B \rightarrow H$. Since $\operatorname{Hom}_{k}(\iota, H): \operatorname{Hom}_{k}(H, H) \rightarrow \operatorname{Hom}_{k}(B, H)$ is an algebra homomorphism, $\iota=\operatorname{Hom}_{k}(\iota, H)\left(\operatorname{id}_{H}\right)$ and $\iota \circ s=\operatorname{Hom}_{k}(\iota, H)(s)$ are *-inverses in the k-algebra $\operatorname{Hom}_{k}(B, H)$.

Now $\operatorname{Hom}_{k}(B, B)$ is identified with a finite dimensional subalgebra of $\operatorname{Hom}_{k}(B, H)$, where $\operatorname{id}_{B}=\iota \in \operatorname{Hom}_{k}(B, H) \times \cap \operatorname{Hom}_{k}(B, B)$. By the previous exercise, id_{B} is invertible in $\operatorname{Hom}_{k}(B, B)$, and B is a Hopf algebra.
c) Again we need only to find an antipode in B.

The map ϕ is surjective, hence $\operatorname{Hom}_{k}(\phi, B)$ is an injective algebra homomorphism, so we can identify $\operatorname{Hom}_{k}(B, B) \subset \operatorname{Hom}_{k}(H, B)$. Note that $\phi=\operatorname{Hom}_{k}(\phi, B)\left(\mathrm{id}_{B}\right)$, so $\phi \in \operatorname{Hom}_{k}(B, B)$.

As in the previous exercise, ϕ is invertible in $\operatorname{Hom}_{k}(B, H)$ and its inverse is given as $\operatorname{Hom}_{k}(H, \phi)(s)=\phi \circ s$. So $\phi \in \operatorname{Hom}_{k}(B, H)^{\times} \cap \operatorname{Hom}_{k}(B, B)=\operatorname{Hom}_{k}(B, B)^{\times}$by exercise a), as desired.

Exercise 3 - Kernel of counit

Suppose that B is a bialgebra, and denote $B^{+}=\operatorname{ker}(\epsilon)$ the augmentation ideal. Show that if $x \in B^{+}$, then

$$
\Delta(x) \in x \otimes 1+1 \otimes x+H^{+} \otimes H^{+}
$$

Proof. It is easy to see that $\Delta(x)-1 \otimes x-x \otimes 1$ is in the kernel of the maps $\epsilon \otimes \operatorname{id}_{H}$ and $\operatorname{id}_{H} \otimes \epsilon$, by using the counit property and that $\epsilon(x)=0$.

Now the following is exact

$$
0 \rightarrow B^{+} \rightarrow B \xrightarrow{\epsilon} k \rightarrow 0,
$$

so tensoring with H along the sequence in each side we obtain that $\operatorname{ker}\left(\epsilon \otimes \mathrm{id}_{B}\right)=B^{+} \otimes B$ and that $\operatorname{ker}\left(\operatorname{id}_{B} \otimes \epsilon\right)=B \otimes B^{+}$.

So $\Delta(x)-1 \otimes x-x \otimes 1 \in\left(B^{+} \otimes B\right) \cap\left(B \otimes B^{+}\right)=B^{+} \otimes B^{+}$holds in vector spaces, as desired.

Exercise 4 - Dedekind's argument

Take a bialebra B and $x \in B$ a non-zero primitive element, i.e. $\Delta x=a \otimes x+x \otimes 1$.
Suppose that $\operatorname{char}(k)=0$. Show that $\left\{1, x, x^{2}, \ldots\right\}$ in l.i.
Proof. Suppose that $\sum_{k=0}^{n} p_{k} x^{k}=0$ such that $p_{n} \neq 0$, and suppose that n is minimal in this way. Note that since $x \neq 0$, we have that $n \geq 2$. In particular, $1, x, \cdots, x^{n-1}$ from a linearly independent set. Consequently, $\left\{x^{r} \otimes x^{s}\right\}_{0 \leq r, s, \leq n-1}$ is a linearly independent set.

So, from $\Delta x=1 \otimes x+x \otimes 1$ we see that $\Delta x^{k}=\sum_{r+s=k}\binom{k}{r} x^{r} \otimes x^{s}$, and consequently:

$$
\begin{align*}
0 \otimes 0 & =\Delta\left(\sum_{k=0}^{n} p_{k} x^{k}\right)=\sum_{k=0}^{n} p_{k} \sum_{r+s=k}\binom{k}{r} x^{r} \otimes x^{s} \\
& =1 \otimes x^{n}+x^{n} \otimes 1 \sum_{k=0}^{n} p_{k} \sum_{\substack{r+s=k \\
r, s<n}}\binom{k}{r} x^{r} \otimes x^{s} \\
& =1 \otimes\left(\sum_{k=0}^{n-1}-\frac{p_{k}}{p_{n}} x^{k}\right)+\left(\sum_{k=0}^{n-1}-\frac{p_{k}}{p_{n}} x^{k}\right) \otimes 1+\sum_{k=0}^{n} p_{k} \sum_{\substack{r+s=k \\
r, s<n}}\binom{k}{r} x^{r} \otimes x^{s} \tag{3}\\
& =\left(\sum_{k=0}^{n-1}-\frac{p_{k}}{p_{n}} 1 \otimes x^{k}-\frac{p_{k}}{p_{n}} x^{k} \otimes 1\right)+\sum_{k=0}^{n} p_{k} \sum_{\substack{r+s=k \\
r, s<n}}\binom{k}{r} x^{r} \otimes x^{s} .
\end{align*}
$$

This contradicts the linear independence of $\left\{x^{r} \otimes x^{s}\right\}_{0 \leq r, s, \leq n-1}$, and we conclude that $\left\{x^{n}\right\}_{n \geq 0}$ form a linear independent set.

Exercise 5 - Primitive elements

For a Hopf algebra H, let $P(H)=\{x \in H \mid \Delta x=1 \otimes x+x \otimes 1\}$ be the set of primitive elements.
a) Suppose that G is a group, and take the Hopf algebra $H=k[G]$, where $\Delta(g)=g \otimes g$. Then $P(H)=0$.
b) If G is a finite group, then $P\left(k^{G}\right)=\operatorname{Hom}_{A b}(G, k)$.
c) For a variable T, compute $P(k[T])$ for char $k=0$ and char $k=p>0$.

Proof. a) Take a generic element $x=\sum_{g \in G} a_{g} g$ such that $\Delta x=1 \otimes x+x \otimes 1$. Recall that $1=\mathrm{id}_{G}$.

Note that

$$
\begin{align*}
1 \otimes x+x \otimes 1 & =\sum_{g \in G} a_{g}\left(\mathrm{id}_{\otimes} g+g \otimes \mathrm{id}_{G}\right) \\
\Delta(x) & =\sum_{g, h \in G} a_{g} g \otimes g \tag{4}
\end{align*}
$$

So, by linear independence of $\{g \otimes h\}_{g, h \in G}$ we obtain that $a_{g}=0$ for every $g \neq i d_{G}$, and $a_{\mathrm{id}_{G}}=2 a_{\mathrm{id}_{G}}$. Hence, $x=0$ and $P(H)=0$ is the zero vector space.
b) We have that x is primitive if and only if

$$
\Delta(x)(g \otimes h)=(1 \otimes x+x \otimes 1)(g \otimes h) \forall g, h \in G
$$

or equivalently, if and only of

$$
x(g h)=x(g)+x(h),
$$

i.e., if and only if x is a group homomorphism.
c) First, note that $\Delta T=1 \otimes T+T \otimes 1$, so $T \in P(k[T])$. Suppose that $x=\sum_{n=0}^{m} a_{n} T^{n}$. Note that:

$$
\begin{align*}
1 \otimes x+x \otimes 1 & =2 a_{0} 1 \otimes 1+\sum_{n=1}^{m} a_{n} T^{n} \otimes 1+\sum_{n=1}^{m} a_{n} 1 \otimes T^{n} \tag{5}\\
\Delta(x) & =\sum_{0 \leq r, s \leq m} a_{r+s}\binom{r+s}{r} T^{r} \otimes T^{s}
\end{align*}
$$

By linear independence, we obtain that x is primitive if and only if

$$
\begin{align*}
2 a_{0} & =a_{0} \\
a_{n} & =\binom{n}{0} a_{n} \forall n>0 \tag{6}\\
0 & =\binom{r+s}{r} a_{r+s} \forall r, s>0 .
\end{align*}
$$

This readily implies that $a_{0}=0$. Now we study two cases separately: call $p=\operatorname{char} k$.
(a) Case $p=0$: If $p=0$ then $0=\binom{r+s}{r} a_{r+s} \Rightarrow a_{r+s}=0$, so we obtain that $a_{n}=0$ for each $n \geq 2$. Consequently, $P(k[T])=\operatorname{span}\{T\}$.
(b) Case $p>0$ prime number: If $p>0$ then we only have $0=\binom{r+s}{r} p_{r+s} \Rightarrow a_{r+s}=0$ whenever $\binom{r+s}{r}$ is not a multiple of p.
If n is not a power of p, take $r=p^{k}$ the biggest power of p smaller than n, and $s=n-r$. Then it follows from Kummer's theorem that $\binom{n}{r}$ is not a multiple of p, and so $a_{n}=0$.
Also, if $n=p^{k}$ is a power of p, then, from Kummer's theorem, $\binom{n}{s}$ is a multiple of p for every positive $s<n$. We conclude that T^{n} is a primitive element of $k[T]$, and so we conclude that

$$
P(k[T])=\operatorname{span}\left\{T^{n} \mid n \text { is a power of } p\right\}
$$

