Homework Assignment 5 - Comodules

Hopf algebras - Spring Semester 2018

Exercise 1

a) Let C be a coalgebra, (V, δ) a C right comodule, W a vector space. The tensor product $W \otimes C$ is a C right comodule via id $\otimes \Delta$. Prove that

$$
\operatorname{Hom}_{k}(V, W) \simeq \mathcal{M}^{C}(V, W \otimes C)
$$

as vector spaces.
Proof. Given a linear map $f: V \rightarrow W$ we may define a k-linear map

$$
V \xrightarrow{(f \otimes \mathrm{id}) \delta} W \otimes C .
$$

The condition

$$
(\delta \otimes \mathrm{id}) \delta=(\mathrm{id} \otimes \Delta) \delta
$$

ensures that this map is colinear. Conversly, given $\varphi \in \mathcal{M}^{C}(V, W \otimes C)$ we may define a k-linear map

$$
V \xrightarrow{\left(\mathrm{id} \oplus \epsilon_{\varphi} \varphi\right.} W .
$$

The two constructions are inverse to each other, since

$$
\begin{aligned}
((\mathrm{id} \odot \epsilon) \varphi \otimes \mathrm{id}) \delta & =((\mathrm{id} \odot \epsilon) \otimes \mathrm{id})(\varphi \otimes \mathrm{id}) \delta \\
& =((\mathrm{id} \odot \epsilon) \otimes \mathrm{id})(\mathrm{id} \otimes \Delta) \varphi \\
& =\varphi
\end{aligned}
$$

and

$$
\begin{aligned}
(\mathrm{id} \odot \epsilon)(f \otimes \mathrm{id}) \delta & =f(\mathrm{id} \odot \epsilon) \delta \\
& =f .
\end{aligned}
$$

b) Let A be an algebra, M an A left module, W a vector space. The tensor product $A \otimes W$ is an A left module via $\mu_{A} \otimes \mathrm{id}$. Prove that

$$
\operatorname{Hom}_{k}(W, M) \simeq{ }_{A} \mathcal{M}(A \otimes W, M)
$$

as vector spaces.

Proof. Given a linear map $f: W \rightarrow M$ we may define the map

$$
A \otimes W \rightarrow M, \quad a \otimes w \mapsto a . f(w) .
$$

Conversely, given $\varphi \in \operatorname{Hom}_{A}(A \otimes W, M)$ we may define the map

$$
W \rightarrow M, \quad w \mapsto \varphi(1 \otimes w) .
$$

Clearly the two constructions are inverse to each other.

Exercise 2

a) Let G be a monoid. Show that G is a group if and only if the map

$$
\varphi: G \times G \rightarrow G \times G, \quad(g, h) \mapsto(g h, h)
$$

is bijective.
Proof. Suppose that G is a group. Then the map

$$
\psi: G \times G \rightarrow G \times G, \quad(g, h) \mapsto\left(g h^{-1}, h\right)
$$

is inverse to φ. Note that with $\epsilon: G \rightarrow\left\{e_{G}\right\}$ it holds that

$$
\begin{equation*}
h^{-1}=(\mathrm{id} \odot \epsilon) \psi^{-1}(1, h) \tag{1}
\end{equation*}
$$

for all $h \in G$.
Conversely, suppose that ψ is a bijection. Then for each $g \in H$ there exist $x, y \in G$ with

$$
(x y, y)=\varphi(x, y)=\left(e_{G}, g\right)
$$

Hence $x g=e_{G}$. This shows that each element of G has a left inverse. In particular, x also has a left inverse $y \in G$. It follows that

$$
y=y(x g)=(y x) g=g .
$$

That is, $x g=g x=e$. Hence G is a group.
b) Let H be a bialgebra. Show that H is a Hopf algebra if and only if the linear map

$$
\varphi: H \otimes_{k} H \rightarrow H \otimes_{k} H, \quad x \otimes y \mapsto x y_{1} \otimes y_{2}
$$

is bijective.
Proof. Suppose that H is a Hopf algebra. Then the map

$$
\psi: H \otimes_{k} H \rightarrow H \otimes_{k} H, \quad x \otimes y \mapsto x S\left(y_{1}\right) \otimes y_{2}
$$

is inverse to ϕ. Indeed,

$$
\begin{aligned}
\psi(\phi(x \otimes y)) & =\psi\left(x y_{1} \otimes y_{2}\right) \\
& =x y_{1} S\left(y_{2}\right) \otimes y_{2} \\
& =x \epsilon\left(y_{1}\right) \otimes y_{2} \\
& =x \otimes y
\end{aligned}
$$

and

$$
\begin{aligned}
\phi(\psi(x \otimes y)) & =\phi\left(x y_{1} \otimes y_{2}\right) \\
& =x y_{1} S\left(y_{2}\right) \otimes y_{3} \\
& =x \epsilon\left(y_{1}\right) \otimes y_{2} \\
& =x \otimes y .
\end{aligned}
$$

Conversely, suppose that φ is bijective. Clearly H is an H left module via μ. Applying $1, b)$ with $W=H$ and $M=H$ yields an isomorphism

$$
\operatorname{Hom}_{k}(H, H) \simeq{ }_{H} \mathcal{M}(H \otimes H, H), \quad f \mapsto \mu(\mathrm{id} \otimes f), \quad \phi(1 \otimes-) \longleftarrow \phi
$$

The tensor product $H \otimes H$ is an H right comodule via id $\otimes \Delta$. Applying 1,a) with $V=H \otimes H$ and $W=H$ yields an isomorphism
$\operatorname{Hom}_{k}(H \otimes H, H) \simeq \mathcal{M}^{H}(H \otimes H, H \otimes H), \quad g \mapsto(g \otimes \operatorname{id})(\mathrm{id} \otimes \Delta), \quad(\mathrm{id} \odot \epsilon) \psi \leftrightarrow \psi$
Here H-linear maps on the left side correspond precisely to H linear maps on the right side. Hence the isomorphism restricts to an isomorphism

$$
{ }_{H} \mathcal{M}(H \otimes H, H) \simeq{ }_{H} \mathcal{M}^{H}(H \otimes H, H \otimes H)
$$

with ${ }_{H} \mathcal{M}^{H}(-,-)$ denoting maps that are both H left linear and H right colinear. Thus,

$$
\begin{aligned}
T: \operatorname{Hom}_{k}(H, H) & \simeq{ }_{H} \mathcal{M}^{H}(H \otimes H, H \otimes H) \\
(\operatorname{id} \odot \epsilon) \alpha(1 \otimes x) & \leftrightarrow \alpha \\
f & \mapsto(\mu(\mathrm{id} \otimes f) \otimes \mathrm{id})(\mathrm{id} \otimes \Delta):\left(x \otimes y \mapsto x f\left(y_{1}\right) \otimes y_{2}\right)
\end{aligned}
$$

Note that

$$
\varphi=(\mu \otimes \mathrm{id})(\mathrm{id} \otimes \Delta) \in{ }_{H} \mathcal{M}^{H}(H \otimes H, H \otimes H)
$$

corresponds to

$$
\mathrm{id} \in \operatorname{Hom}_{k}(H, H)
$$

There is a monoid structure on $\operatorname{Hom}_{k}(H, H)$ given by the $*$-product and a monoid structure on ${ }_{H} \mathcal{M}^{H}(H \otimes H, H \otimes H)$ given by the composition of morphisms. We assumed that φ is bijective, so it has an inverse with respect to this monoid structure. In order to show that its image id $\in \operatorname{Hom}_{k}(H, H)$ has a $*$-inverse it suffices to verify that the correspondence is an anti monoid homomorphism.

To this end, note that

$$
\begin{aligned}
T(g)(T(f)(x \otimes y)) & =T(g)\left(x f\left(y_{1}\right) \otimes y_{2}\right) \\
& =x f\left(y_{1}\right) g\left(y_{2}\right) \otimes y_{3} \\
& =x(f * g)\left(y_{1}\right) \otimes y_{2} \\
& =T(f * g)(x \otimes y)
\end{aligned}
$$

and

$$
\begin{aligned}
T(\eta \epsilon)(x \otimes y) & =x \epsilon\left(y_{1}\right) \otimes y_{2} \\
& =x \otimes \epsilon\left(y_{1}\right) y_{2} \\
& =x \otimes y
\end{aligned}
$$

Exercise 3

Let H be a Hopf algebra. Which condition do we have to impose on H such that the canonical monomorphism

$$
\varphi: V \rightarrow V^{* *}, \quad v \mapsto(f \mapsto f(v))
$$

is H-linear for each H left module V ?
Proof. The condition is $S^{2}=\mathrm{id}$. To see this, note that

$$
h . f(v)=f(S(h) \cdot v)
$$

for $h \in H, f \in V^{*}, v \in V$, and thus

$$
\begin{aligned}
(h \cdot \varphi(v))(f) & =\varphi(v)(S(h) \cdot f) \\
& =(S(h) \cdot f)(v) \\
& =f\left(S^{2}(h) v\right) \\
& =\varphi\left(S^{2}(h) \cdot v\right)(f) .
\end{aligned}
$$

If $S^{2}=$ id then clearly φ is H-linear. Conversely, taking $V=H, v=1_{H}$ it follows that $f\left(S^{2}(h)\right)=f(h)$ for all $h \in H$ and $f \in H^{*}$, yielding $S^{2}=\mathrm{id}$.

Exercise 4

Suppose that char $k=p>0$ and let $H=k<t \mid t^{p}=0>$ be the Hopf algebra with t primitive. Show that

$$
H \simeq H^{*}
$$

as Hopf algebras.

Proof. Let $\varphi \in H^{*}$ be the map with $\varphi\left(t^{i}\right)=\delta_{1, i}$ for $0 \leq i<p . \varphi$ is a primitive element of the Hopf algebra H^{*}, because for all $0 \leq i, j<n$ it holds that

$$
\varphi\left(t^{i}\right) \epsilon\left(t^{j}\right)+\epsilon\left(t^{i}\right) \varphi\left(t^{j}\right)=\varphi\left(t^{i}\right) \delta_{j, 0}+\delta_{i, 0} \varphi\left(t^{j}\right)=\varphi\left(t^{i+j}\right)
$$

It holds that $\varphi^{p}=0$, because

$$
\varphi^{p}(t)=\sum_{i=1}^{p} \varphi(t) \varphi(1)^{p-1}=p=0
$$

Hence there is an algebra homomorphism

$$
H \rightarrow H^{*}, \quad t \mapsto \varphi
$$

As t and φ are both primitive, it follows that this is also a coalgebra homomorphism.
We know that for a primitive element x in a bialgebra over a field with characteristic 0 the powers $1, x, x^{2}, \ldots$ are linear independent. Since $\binom{n}{k} \neq 0$ for $n<p, 0 \leq k \leq n$ the exact same argument yields that $1, x, x^{2}, \ldots, x^{p-1}$ are linear independent if the field has characteristic p. Hence the morphism $H \rightarrow H^{*}$ with $t \mapsto \varphi$ is an isomorphism.

Exercise 5

Let $q \in k^{\times}$be a primitive root of unity. Show that the Taft Hopf algebra

$$
H=k<g, x \mid g^{n}=1, x^{n}=0, g x=q x g>
$$

with g group-like and $x(g, 1)$-primitive has dimension n^{2}.
Proof. We may check that

$$
H \simeq k[X] /\left(X^{n}\right) \# k[G] /\left(G^{n}-1\right)
$$

with G group-like, $G \cdot X=q X$. To this end, note that

$$
\sigma: k[X] /\left(X^{n}\right) \rightarrow k[X] /\left(X^{n}\right), \quad \bar{X} \mapsto q \bar{X}
$$

is a well-defined algebra homomorphism, and $\sigma^{n}=\mathrm{id}$. Hence

$$
\delta: k[G] \rightarrow \operatorname{End}_{k}\left(k[X] /\left(X^{n}\right)\right), \quad G \mapsto \sigma
$$

factors over $k[G] /\left(G^{n}-1\right)$. This makes the algebra $k[X] /\left(X^{n}\right)$ a left module over the Hopf algebra $k[G] /\left(G^{n}-1\right)$. Since \bar{G} is group-like and acts as an algebra endomorphism, it is clear that $k[X] /\left(X^{n}\right)$ is a left module algebra. Hence we may form the smash product

$$
k[X] /\left(X^{n}\right) \# k[G] /\left(G^{n}-1\right)
$$

The algebra homomorphism

$$
\varphi: k<g, x>\rightarrow k[X] /\left(X^{n}\right) \# k[G] /\left(G^{n}-1\right)
$$

factors over H, since $\bar{G}^{n}=1, \bar{X}^{n}=0$, and

$$
\bar{G} \bar{X}=(\bar{G} \cdot \bar{X}) \bar{G}=q \bar{X} \bar{G}
$$

The vector space generating set $\left(\bar{g}^{i} \bar{x}^{j}\right)_{0 \leq i, j<n}$ gets mapped to the basis $\left(\bar{G}^{i} \bar{X}^{j}\right)_{0 \leq i, j<n}$, making the induced map an isomorphism.

Hence the Taft Hopf algebra has dimension n^{2} and $\left(\bar{x}^{i} \bar{g}^{j}\right)_{0 \leq i, j<n}$ is basis.

