Homework Assignment 6 - Solution

Hopf algebras - Spring Semester 2018

Exercise 1

Let H be a bialgebra.

a) Show that H°P is a bialgebra. (Recall that for any algebra A we let A°P denote the
algebra with A% := {a°? | a € A} and a°Pb°? = (ba)°P for all a°P, bP € A°P.)

b) Show that HP is a bialgebra. (Recall that for any coalgebra C' we let C°°P denote the
coalgebra with C®P := {z°P | x € C'} and Ageop (2°P) = 25 P @27 for all 2P € C°°P.)

c) Show that if H is a Hopf algebra then so is H°P°P.
d) Show that if H is a Hopf algebra with a bijective antipode, then so are H°? and H°P.

Proof. These can be observed immediately by diagrams, but also by checking algebraically.
Here we do the latter:

a) We need to show that p°° and ¢ are comultiplicative for the opposite product, note
that the unit is the same one so there is no need to check that ¢ is a comultiplicative.

A(a) P A(b) = Ab- Aa = A(ba) = A(a P b).
€(a-Pb) =¢€(b-a) =e(b)e(a) = e(a)e(b) .

b) Similarly, we need only to show that AP and e are multiplicative for the opposite
product, and note again that the counit is the same so there is no need to check that
it is multiplicative.

APq - APh = a2b2 X a161 = (a . b)2 &® (CL . b)l = ACOP<CL : b) .
A1) =1@1.

¢) We know that HP®P is a bialgebra. We claim that if S is the antipode of H, then it
is also the antipode of H°P®P. Indeed, it is trivial that

pPo(id® S)o AP =po(S®id)o A =roe.
pP o (S®id) o A*P =po(id® S)oA=1o0€.



d) Now we claim that S~1 is the antipode of H. Indeed, recall that S is an algebra
antihomomorphism, so

Sou®o(S'®id)oA=poSo(S'®id)oA=po(id® S)oA=1r0¢,
and the desired is concluded after applying S~! on both sides.
Similarly to show that pu°P o (id ® ST oA =10

Exercise 2

Let H be a Hopf algebra and (A,d) an H right comodule algebra. The elements of the
subalgebra
A —lac Alay®a; =a®1}

are termed H-coinvariant. If the map
can : A®peom A > AQueon H, @Yy — 290 @ 11

is bijective, we say A C A is an H Galois extension and A is H-Galois.

Now, let A be an H left module algebra. Recall that the smash product A#H is an H
right comodule algebra via id ® A. Show that A C A#H is the subalgebra of H-coinvariant
elements and that A C A#H is an H Galois extension.

Proof. First we observe that A#H” = A, note that §(a#1) = a#Al = a#1 ® 1. On the
other hand, pick a basis {ax}rex of A, and suppose that Y, . ax#thi, € A#H then by
hypothesis

D a#he @1 =Y aH#Ahy,

keK keK

and consequently, by linear independence, we have that Ahy = hy ® 1. Applying (e ® id) on
both sides yields hy = €(hg)1 so we conclude that

Z ak#hk = (Z ake(hk)> ®1e A,

keK keK

as desired.
To show that this is in fact a Galois extension, we will find the inverse of the map

can : A#H @4 A#H — A#H ®4 H, can:a#g ® 1#h — (a#g) - (1#h1) @ hy
Note that we have
(a#9) - (1##h1) @ hy = (a(g1 - 1)F#g2h1 & hy = a#e(g1)g2h1 @ he = a#tghi & hy,

SO



can : a#qg ® 1#h — a#gh; ® hy
With this, the inverse that we propose is the following

a:a#tg®h— a#tgS(hy) @ 14hy
Indeed, note that

a(can(a#tg ® 13£h)) = a#tgh1S((ha)1) @ 14(h2)2 = a#tgh1S(he) @ 14ths

= a#gle(hl) & 1#h2 = a#g ® 1#€(h1)h2 (1)
= a#g ® 1#h.
And also
(a(a#tg ® h)) = a#gS(h1)(ha)1 ® (h2)2 = a#gS(hi)he @ hs
= a#gle(hy) @ ho = a#g @ €(hy)hs (2)
=affg®h,
concluding the proof. O

Exercise 3

Let k C L be a Galois extension with Galois group G = Auty(L). Clearly G operates on L,
making L a k[G] left module algebra and hence a k[G]* = kY right comodule algebra.
Show that k& C L is a k% Galois extension.

Proof. Let us first recall the Hopf algebra structures on k[G] = k[G]** and k[G]*. Let {e,}sec
be the canonical basis of k[G], so that eje, = ey, and Ae, = e, ® 4. Take {f,}4ec the dual
basis of {e,}seq, so that f,(en) = 0,5, and note that

fgfh:(;g,hfg'
Afy=>" i ® fns-

hiha=g
Remark that if we take the dual basis of {f,},cc we obtain again {e;}seq, so we can
write eg(fh) = Ogn-
The left k[G]**-module algebra structure on L is exactly ¢ - o = g(«), and to find it’s
adjungated k[G]*-module coalgebra structure (L, J) it needs to satisfy

eg - U = vpey(v1),

we note that 6(v) = > ., 9(v) ® f, is the unique such structure.

Now we wish to show that k& C L is a k[G]|*-Galois extension. First, let’s observe that
Le°kIG" = k. Indeed, note that v € L®FIC" & g(v) = v Vg € G, and the only fixed points
of all automorphisms is exactly &k (this is the fundamental Galois theorem for the subgroup
G C G identified with the field extension k C k C L).
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Now to show that

can: L ®, L — L ® H, v®wr—>ng(w)®fg,

geG

note first that both sides are |G|*-dimensional k-vector spaces, so it is enough to establish
injectivity.

Take ) . v; ® w; € kercan, and let’s recall that Hom(L ®; L, L) has basis {v @ w —
vg(w) = id © g}geq. Note that cany ", v; @ wi = Y- o (2, vig(wi)) @ fy. So X7, v; @ w; €
kercan = > . v; @ w;id © g = >, v; ® w; = 0 since {id © g} 4eq is a basis of (L ®; L)*. This
concludes the proof. O

Exercise 4

Suppose that chark = p > 0 and let m,n > 1, o, § € k. Show that

n—+m

H=k<t|t"  =0>
is a commutative Hopf algebra with
A =tR1+1t+at?” Q7" + BtF" 7.

Describe the affine algebraic group Sp(H).

Proof. We will see that H is in fact a bialgebra. First define €(t") = d,, 0 and A(t") = (A(¢))™.
Recall that o — o is a linear map, hence both functions are well defined in H, as we have

@) =0,

2n-+m 2m—+n 2n—+m

® tP =0.

n+m 2m—+n

AT = (AW =" @1+ 10" " ot @t 4 B

So A and € are well defined algebra homomorphisms, which endows H with a bialgebra
structure.
It is easy to see, since H is the quotient of a free algebra, that

Sp(H)(A) = Algi(H,A) = B,
where B C A is the subalgebra of elements a € A such that a®"™ = 0.
Note that this is an affine group with respect to the addition, as for a,b € SP(H)(A)
m—+n

we have that (a4 b)P""" =a?”"" + """ = 0. Also, H is a commutative bimonoid, so H is
indeed a Hopf algebra. m



