
Homework Assignment 6 - Solution

Hopf algebras - Spring Semester 2018

Exercise 1

Let H be a bialgebra.

a) Show that Hop is a bialgebra. (Recall that for any algebra A we let Aop denote the
algebra with Aop := {aop | a ∈ A} and aopbop = (ba)op for all aop, bop ∈ Aop.)

b) Show that Hcop is a bialgebra. (Recall that for any coalgebra C we let Ccop denote the
coalgebra with Ccop := {xcop | x ∈ C} and ∆Ccop(xcop) = xcop2 ⊗x

cop
1 for all xcop ∈ Ccop.)

c) Show that if H is a Hopf algebra then so is Hopcop.

d) Show that if H is a Hopf algebra with a bijective antipode, then so are Hop and Hcop.

Proof. These can be observed immediately by diagrams, but also by checking algebraically.
Here we do the latter:

a) We need to show that µop and ι are comultiplicative for the opposite product, note
that the unit is the same one so there is no need to check that ι is a comultiplicative.

∆(a) ·op ∆(b) = ∆b ·∆a = ∆(ba) = ∆(a ·op b) .

ε(a ·op b) = ε(b · a) = ε(b)ε(a) = ε(a)ε(b) .

b) Similarly, we need only to show that ∆cop and ε are multiplicative for the opposite
product, and note again that the counit is the same so there is no need to check that
it is multiplicative.

∆copa ·∆copb = a2b2 ⊗ a1b1 = (a · b)2 ⊗ (a · b)1 = ∆cop(a · b) .

∆cop(1) = 1⊗ 1 .

c) We know that Hopcop is a bialgebra. We claim that if S is the antipode of H, then it
is also the antipode of Hopcop. Indeed, it is trivial that

µop ◦ (id⊗ S) ◦∆cop = µ ◦ (S ⊗ id) ◦∆ = ι ◦ ε .

µop ◦ (S ⊗ id) ◦∆cop = µ ◦ (id⊗ S) ◦∆ = ι ◦ ε .
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d) Now we claim that S−1 is the antipode of Hop. Indeed, recall that S is an algebra
antihomomorphism, so

S ◦ µop ◦ (S−1 ⊗ id) ◦∆ = µ ◦ S ◦ (S−1 ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆ = ι ◦ ε ,

and the desired is concluded after applying S−1 on both sides.

Similarly to show that µop ◦ (id⊗ S−1) ◦∆ = ι ◦ ε.

Exercise 2

Let H be a Hopf algebra and (A, δ) an H right comodule algebra. The elements of the
subalgebra

Aco H = {a ∈ A | a0 ⊗ a1 = a⊗ 1}

are termed H-coinvariant. If the map

can : A⊗Aco H A→ A⊗Aco H H, x⊗ y 7→ xy0 ⊗ y1

is bijective, we say Aco H ⊂ A is an H Galois extension and A is H-Galois.
Now, let A be an H left module algebra. Recall that the smash product A#H is an H

right comodule algebra via id⊗∆. Show that A ⊂ A#H is the subalgebra of H-coinvariant
elements and that A ⊂ A#H is an H Galois extension.

Proof. First we observe that A#HcoH = A, note that δ(a#1) = a#∆1 = a#1⊗ 1. On the
other hand, pick a basis {ak}k∈K of A, and suppose that

∑
k∈K ak#hk ∈ A#HcoH , then by

hypothesis ∑
k∈K

ak#hk ⊗ 1 =
∑
k∈K

ak#∆hk ,

and consequently, by linear independence, we have that ∆hk = hk ⊗ 1. Applying (ε⊗ id) on
both sides yields hk = ε(hk)1 so we conclude that

∑
k∈K

ak#hk =

(∑
k∈K

akε(hk)

)
⊗ 1 ∈ A ,

as desired.
To show that this is in fact a Galois extension, we will find the inverse of the map

can : A#H ⊗A A#H → A#H ⊗A H, can : a#g ⊗ 1#h 7→ (a#g) · (1#h1)⊗ h2

Note that we have

(a#g) · (1#h1)⊗ h2 = (a(g1 · 1)#g2h1 ⊗ h2 = a#ε(g1)g2h1 ⊗ h2 = a#gh1 ⊗ h2 ,

so
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can : a#g ⊗ 1#h 7→ a#gh1 ⊗ h2
With this, the inverse that we propose is the following

α : a#g ⊗ h 7→ a#gS(h1)⊗ 1#h2

Indeed, note that

α(can(a#g ⊗ 1#h)) = a#gh1S((h2)1)⊗ 1#(h2)2 = a#gh1S(h2)⊗ 1#h3

= a#g1ε(h1)⊗ 1#h2 = a#g ⊗ 1#ε(h1)h2

= a#g ⊗ 1#h .

(1)

And also

(α(a#g ⊗ h)) = a#gS(h1)(h2)1 ⊗ (h2)2 = a#gS(h1)h2 ⊗ h3
= a#g1ε(h1)⊗ h2 = a#g ⊗ ε(h1)h2
= a#g ⊗ h ,

(2)

concluding the proof.

Exercise 3

Let k ⊂ L be a Galois extension with Galois group G = Autk(L). Clearly G operates on L,
making L a k[G] left module algebra and hence a k[G]∗ = kG right comodule algebra.
Show that k ⊂ L is a kG Galois extension.

Proof. Let us first recall the Hopf algebra structures on k[G] ∼= k[G]∗∗ and k[G]∗. Let {eg}g∈G
be the canonical basis of k[G], so that egeh = egh and ∆eg = eg ⊗ eg. Take {fg}g∈G the dual
basis of {eg}g∈G, so that fg(eh) = δg,h, and note that

fgfh = δg,hfg .

∆fg =
∑

h1h2=g

fh1 ⊗ fh2 .

Remark that if we take the dual basis of {fg}g∈G we obtain again {eg}g∈G, so we can
write eg(fh) = δg,h.

The left k[G]∗∗-module algebra structure on L is exactly g · α = g(α), and to find it’s
adjungated k[G]∗-module coalgebra structure (L, δ) it needs to satisfy

eg · v = v0eg(v1) ,

we note that δ(v) =
∑

g∈G g(v)⊗ fg is the unique such structure.
Now we wish to show that k ⊂ L is a k[G]∗-Galois extension. First, let’s observe that

Lco k[G]∗ = k. Indeed, note that v ∈ Lco k[G]∗ ⇔ g(v) = v ∀g ∈ G, and the only fixed points
of all automorphisms is exactly k (this is the fundamental Galois theorem for the subgroup
G ⊂ G identified with the field extension k ⊂ k ⊂ L).
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Now to show that

can : L⊗k L→ L⊗k H, v ⊗ w 7→
∑
g∈G

vg(w)⊗ fg ,

note first that both sides are |G|2-dimensional k-vector spaces, so it is enough to establish
injectivity.

Take
∑

i vi ⊗ wi ∈ ker can, and let’s recall that HomL(L ⊗k L,L) has basis {v ⊗ w 7→
vg(w) = id � g}g∈G. Note that can

∑
i vi ⊗ wi =

∑
g∈G (

∑
i vig(wi)) ⊗ fg. So

∑
i vi ⊗ wi ∈

ker can⇒
∑

i vi ⊗wiid� g ⇒
∑

i vi ⊗wi = 0 since {id� g}g∈G is a basis of (L⊗k L)∗. This
concludes the proof.

Exercise 4

Suppose that chark = p > 0 and let m,n ≥ 1, α, β ∈ k. Show that

H = k < t | tpn+m

= 0 >

is a commutative Hopf algebra with

∆(t) = t⊗ 1 + 1⊗ t+ αtp
n ⊗ tpm + βtp

m ⊗ tpn .

Describe the affine algebraic group Sp(H).

Proof. We will see that H is in fact a bialgebra. First define ε(tn) = δn,0 and ∆(tn) = (∆(t))n.
Recall that α 7→ αp is a linear map, hence both functions are well defined in H, as we have

ε(tp
n+m

) = 0 ,

∆(tp
n+m

) = (∆(t))p
n+m

= tp
n+m ⊗ 1 + 1⊗ tpn+m

+ αtp
2n+m ⊗ tp2m+n

+ βtp
2m+n ⊗ tp2n+m

= 0 .

So ∆ and ε are well defined algebra homomorphisms, which endows H with a bialgebra
structure.

It is easy to see, since H is the quotient of a free algebra, that

Sp(H)(A) = Algk(H,A) ∼= B ,

where B ⊂ A is the subalgebra of elements a ∈ A such that ap
n+m

= 0.
Note that this is an affine group with respect to the addition, as for a, b ∈ SP (H)(A)

we have that (a+ b)p
m+n

= ap
n+m

+ bp
n+m

= 0. Also, H is a commutative bimonoid, so H is
indeed a Hopf algebra.
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