Homework Assignment 7 -Solution

Hopf algebras - Spring Semester 2018

Exercise 1

Let k be a field with characteristic 0 . Consider the Weyl alebra

$$
A=k<x, y \mid x y-y x=1>.
$$

a) Show that A is a simple algebra. That is, the only two-sided ideals of A are 0 and A.
b) Let $k[t]$ be the polynomial algebra with indeterminate t. We define the endomorphisms $\hat{t}, d \in \operatorname{End}_{k}(k[t])$ by

$$
\begin{gathered}
\hat{t}\left(t^{n}\right)=t^{n+1}, n \geq 0 . \\
d\left(t^{n}\right)=n t^{n-1}, n \geq 0 \text { and } d(1)=0 .
\end{gathered}
$$

Consider the subalgebra $k[\hat{t}, d] \subseteq \operatorname{End}(k[t])$. Show that $A \simeq k[\hat{t}, d]$.
Proof of first item. First we note some simple properties of A. It is easy to see that A has a k-basis given by $\left\{y^{i} x^{j}\right\}_{i, j \geq 0}$. Also note that we have the following equations, that can be easily shown by induction:

$$
\begin{gather*}
x y^{i} x^{j}=i y^{i-1} x^{j}+y^{i} x^{j+1} . \tag{1}\\
x^{j} y=j y x^{j-1}+y x^{n} . \tag{2}
\end{gather*}
$$

To show that A is simple, suppose that $I \subseteq A$ is a non-zero ideal. Our goal is to show that $k \cap I \neq 0$.

Consider the following total order in \mathbb{N}_{0}^{2} : we say that $(i, j) \leq\left(i^{\prime}, j^{\prime}\right)$ if $j<j^{\prime}$ or if $j=j^{\prime}, i \leq i^{\prime}$. This is the dictionary order after switching the coordinates. For instance, we have that $(3,4) \leq(5,4) \notin(6,1)$.

Take $v \in I$ such that $v=\sum_{(i, j) \leq\left(i^{\prime}, j^{\prime}\right)} v_{i, j} y^{i} x^{j}$ for minimal $\left(i^{\prime}, j^{\prime}\right)$. Note that if $i^{\prime}>0$, from (1) we have

$$
x v-v x=\sum_{(i, j) \leq\left(i^{\prime}-1, j^{\prime}\right)} v_{i+1, j}(i+1) y^{i} x^{j} \in I,
$$

is non-zero, contradicting the minimality of v. Similarly, if $i^{\prime}=0$ and $j^{\prime}>0$, note that from (2) we have

$$
y v-v y=\sum_{(i, j)<\left(0, j^{\prime}\right)} v_{i, j}^{\prime} y^{i} x^{j}+-n y x^{j^{\prime}-1} \neq 0,
$$

hence the minimal $v \neq 0$ is in k, and we are done.

Proof of second item. We just note that $\hat{t} d-d \hat{t}=1$, so we have a map $\phi: A \rightarrow k<\hat{t}, d>$ that sends $x \mapsto \hat{t}$ and $y \mapsto d$. Since A is simple, and $\operatorname{ker} \phi \neq A, \phi$ is an isomorphism.

Exercise 2

Compute the algebras $\operatorname{Lie}\left(S L_{n}\right)$ and $\operatorname{Lie}\left(O_{n}\right)$.
Solutions. The resulting groups are, respectively, isomorphic to $\left\{M \in M_{n}(k) \mid \operatorname{tr}(M)=0\right\}$ and $\left\{M \in M_{n}(k) \mid M=-M^{T}\right\}$.

Indeed, recall that $\operatorname{Lie}(A)=\operatorname{ker} A\left(\pi: A\left(k<\tau \mid \tau^{2}=0>\right) \rightarrow A(k)\right)$.
So M in $\operatorname{ker} S L_{n}(\pi)$ is a matrix $M=M_{0}+\tau M_{1}=S L_{n}\left(k<\tau \mid \tau^{2}=0>\right)$, where $M_{0}, M_{1} \in M_{n}(k)$ that satisfies

$$
\begin{aligned}
& \left.M\right|_{\tau=0}=I d \\
& \operatorname{det}(M)=1
\end{aligned}
$$

Note that the first equality is equivalent to $M_{0}=I d$. Let $p_{M_{1}}(x)=\operatorname{det}(M-x I d)=$ $\sum_{k=0}^{n} b_{k} x^{k}$ be the characteristic polynomial of the matrix M_{1}.

Then $\operatorname{det}(M)=\operatorname{det}\left(\tau\left(M_{1}-\left(-\tau^{-1}\right) I d\right)\right)=\tau^{n} p_{M_{1}}\left(-\tau^{-1}\right)$. With the fact that $\tau^{2}=0$ we have

$$
\operatorname{det}(M)=b_{n}(-1)^{n}+b_{n-1} \tau(-1)^{n-1}
$$

It is well known that $b_{0}=(-1)^{n}$ and $b_{n-1}=(-1)^{n-1} \operatorname{tr}\left(M_{1}\right)$. Hence $\operatorname{det}(M)=1$ if and only if $\operatorname{tr} M_{1}=0$.

Note that the product structure behaves as $\left(I d+M_{1} \tau\right)\left(I d+M_{1}^{\prime} \tau\right)=I d \tau\left(M_{1}+M_{1}^{\prime}\right)$.
Now to compute $\operatorname{Lie}\left(O_{n}\right)=\operatorname{ker} O_{n}(\pi)$ we consider the matrices $M \in M_{n}\left(k<\tau \mid \tau^{2}=0>\right)$ that satisfy both

$$
\begin{aligned}
& \left.M\right|_{\tau=0}=I d \\
& M M^{T}=I d
\end{aligned}
$$

So we obtain again that $M=I d+\tau M_{1}$, from the first equation. Additionally, we have that $M M^{T}=I d \Leftrightarrow M_{1}+M_{1}^{T}=0_{n}$, finally one notes that as a a group, it holds

$$
\operatorname{Lie}\left(O_{n}\right)=\left\{M \in M_{n}(k) \mid M=-M^{T}\right\}
$$

Exercise 3

Consider a group G and let $k[G]$ denote the corresponding group algebra. Let A be an algebra over k and $\left(A_{g}\right)_{g \in G}$ a family of linear subspaces $A_{g} \subset A$. We say $\left(A,\left(A_{g}\right)_{g \in G}\right)$ is a graded algebra if the following conditions hold:

- If 1_{G} is the identity of G and 1_{A} the unit of the algebra, then $1_{A} \in A_{1_{G}}$.
- We have that $A=\oplus_{g} A_{g}$
- For any $g, h \in G$, we have $A_{g} A_{h} \subset A_{g h}$.

For any comodule algebra structure $\delta: A \rightarrow A \otimes k[G]$ we may define a family $\left(A_{g}\right)_{g \in G}$

$$
A_{g}=\{a \in A \mid \delta(a)=a \otimes g\}
$$

for all $g \in G$. Show that this yields a bijection between $k[G]$-comodule algebra structures on A and gradings $\left\{A_{g} \mid g \in G\right\}$ of G.

Proof. It is easy to see that if $\left.\left(A,\left(A_{g}\right)_{g \in G}\right)\right)$ is a G-graded algebra, then δ defined at each A_{g} via $\delta: a \mapsto a \otimes g$ determines a $k[G]$-comodule structure. The additional requirement that $A_{g} A_{h} \subseteq A_{g h}$ tells us that this is also a comodule algebra structure. This is the inverse construction from the one given. It suffices then, to show that if we have a $k[G]$-comodule algebra (A, δ), then $\left(A,\left(A_{g}\right)_{g \in G}\right)$ is a G-grading.

Since $\delta\left(1_{A}\right)=1=1_{A} \otimes e_{i d}, 1_{A} \in A_{i d}$. It is also clear that if $a \in A_{g}, b \in A_{h}$, then $\delta(a b)=\delta(a) \delta(b)=a b \otimes g h$, so $a b \in A_{g h}$.

It suffices to show that $A=\oplus_{g \in G} A_{g}$. Note that if $\sum_{g \in G} \lambda_{g} a_{g}=0$ with $a_{g} \in A_{g}$, then

$$
0=\delta\left(\sum_{g \in G} \lambda_{g} a_{g}\right)=\sum_{g \in G} \lambda_{g} a_{g} \otimes g,
$$

it follows by linear independence, that $\lambda_{g}=0$ for any $g \in G$. This concludes that $\oplus_{g \in G} A_{g} \subset$ A.

On the other hand, let $a \in A$, and note that there is a unique way of writing $\delta a=$ $\sum_{g \in G} a_{g} \otimes g$. It follows that $a_{g} \in A_{g}$ because $(i d \otimes \Delta) \circ \delta=(\delta \otimes i d) \circ \delta$. We conclude that $a \in \oplus_{g \in G} A_{g}$.

Exercise 4

Consider a group $G, k[G]$ the group algebra and A an algebra over k. Recall from the previous exercise the definition of G-graded algebra. Additionally, if A is an H-comodule algebra let $A^{c o H}=\{v \in A \mid \delta(v)=v \otimes 1\}$ denote the H-coinvariants.

Such G-graded algebra is said to be strongly graded if $A_{g} A_{h}=A_{g h}$.
Show that $A^{\text {co } k[G]} \subset A$ is a $k[G]$ Galois extension if and only if the grading $\left(A_{g}\right)_{g \in G}$ is strong.

Hint: We can take an expression of $1 \in A_{g} A_{g^{-1}}$. Use this to show that $A_{g} \otimes_{A_{\mathrm{id}_{G}}} A_{h} \rightarrow A_{g h}$ is an isomorphism.

Proof. In the previous exercise, we have seen that $A^{c o k[G]}=A_{\mathrm{id}_{G}}$, so $A_{\mathrm{id}_{G}} \subset A$ is a Galois extension if

$$
\operatorname{can} A \otimes_{A_{\mathrm{id}_{G}}} A \rightarrow A \otimes k[G]
$$

is bijective. Note that can acts on $A_{g} \otimes_{A_{\mathrm{id}_{G}}} A_{h} \rightarrow A_{g h} \otimes e_{h} \cong A_{g h}$ as the multiplication, so we have that $A_{\mathrm{id}_{G}} \subset A$ is a Galois extension if and only if each $A_{g} \otimes_{A_{\mathrm{id}_{G}}} A_{h} \rightarrow A_{g h}$ is an isomorphism.

To establish one direction of the proof, it is easy to see that if $A_{\mathrm{id}_{G}} \subset A$ is a Galois extension, then $A_{g} \otimes_{A_{\mathrm{id}_{G}}} A_{h} \rightarrow A_{g h}$ is surjective, and so A is G-strongly graded.

On the other hand, if A is strongly graded, then $\mu: A_{g} \otimes_{A_{\mathrm{id}_{G}}} A_{h} \rightarrow A_{g h}$ is inverted in the following way: Take $1 \in A_{\mathrm{id}_{G}}=A_{g^{-1}} A_{g}$, so that we can write $a=\sum_{i} v_{i} \otimes w_{i}$ where $\delta v_{i}=v_{i} \otimes g$ and $\delta w_{i}=w_{i} \otimes h$.

Consider the map $\alpha: A_{g h} \rightarrow A_{g} \otimes A_{h}$ given as

$$
x \mapsto \sum_{i} v_{i} \otimes w_{i} x
$$

then it is clear that $\mu \circ \alpha(x)=\mu\left(\sum_{i} v_{i} \otimes w_{i} x\right)=\sum_{i} v_{i} w_{i} x=x$.
On the the other hand, for $a \in A_{g}, b \in A_{h}$ note that $w_{i} a \in A_{\mathrm{id}_{G}}$ so we have that

$$
\alpha \circ \mu(a \otimes b)=\alpha(a b)=\sum_{i} v_{i} \otimes w_{i} a b=\sum_{i} v_{i} w_{i} a \otimes b=a \otimes b .
$$

This concludes that μ is an isomorphism.

