
Homework Assignment 7 -Solution

Hopf algebras - Spring Semester 2018

Exercise 1

Let k be a field with characteristic 0. Consider the Weyl alebra

A = k < x, y|xy − yx = 1 > .

a) Show that A is a simple algebra. That is, the only two-sided ideals of A are 0 and A.

b) Let k[t] be the polynomial algebra with indeterminate t. We define the endomorphisms
t̂, d ∈ Endk(k[t]) by

t̂(tn) = tn+1, n ≥ 0 .

d(tn) = ntn−1, n ≥ 0 and d(1) = 0 .

Consider the subalgebra k[t̂, d] ⊆ End(k[t]). Show that A ' k[t̂, d].

Proof of first item. First we note some simple properties of A. It is easy to see that A has
a k-basis given by {yixj}i,j≥0. Also note that we have the following equations, that can be
easily shown by induction:

xyixj = iyi−1xj + yixj+1 . (1)

xjy = jyxj−1 + yxn . (2)

To show that A is simple, suppose that I ⊆ A is a non-zero ideal. Our goal is to show
that k ∩ I 6= 0.

Consider the following total order in N2
0: we say that (i, j) ≤ (i′, j′) if j < j′ or if

j = j′, i ≤ i′. This is the dictionary order after switching the coordinates. For instance, we
have that (3, 4) ≤ (5, 4) 6≤ (6, 1).

Take v ∈ I such that v =
∑

(i,j)≤(i′,j′) vi,jy
ixj for minimal (i′, j′). Note that if i′ > 0, from

(1) we have

xv − vx =
∑

(i,j)≤(i′−1,j′)

vi+1,j(i+ 1)yixj ∈ I ,

is non-zero, contradicting the minimality of v. Similarly, if i′ = 0 and j′ > 0, note that from
(2) we have

yv − vy =
∑

(i,j)<(0,j′)

v′i,jy
ixj +−nyxj′−1 6= 0 ,

hence the minimal v 6= 0 is in k, and we are done.
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Proof of second item. We just note that t̂d − dt̂ = 1, so we have a map φ : A → k < t̂, d >
that sends x 7→ t̂ and y 7→ d. Since A is simple, and kerφ 6= A, φ is an isomorphism.

Exercise 2

Compute the algebras Lie(SLn) and Lie(On).

Solutions. The resulting groups are, respectively, isomorphic to {M ∈ Mn(k)|tr(M) = 0}
and {M ∈Mn(k)|M = −MT}.

Indeed, recall that Lie(A) = kerA(π : A(k < τ |τ 2 = 0 >)→ A(k)).
So M in kerSLn(π) is a matrix M = M0 + τM1 = SLn(k < τ |τ 2 = 0 >), where

M0,M1 ∈Mn(k) that satisfies

M
∣∣∣
τ=0

= Id ,

det(M) = 1 .

Note that the first equality is equivalent to M0 = Id. Let pM1(x) = det(M − xId) =∑n
k=0 bkx

k be the characteristic polynomial of the matrix M1.
Then det(M) = det(τ(M1 − (−τ−1)Id)) = τnpM1(−τ−1). With the fact that τ 2 = 0 we

have
det(M) = bn(−1)n + bn−1τ(−1)n−1 .

It is well known that b0 = (−1)n and bn−1 = (−1)n−1tr(M1). Hence det(M) = 1 if and
only if trM1 = 0.

Note that the product structure behaves as (Id+M1τ)(Id+M ′
1τ) = Idτ(M1 +M ′

1).
Now to compute Lie(On) = kerOn(π) we consider the matrices M ∈Mn(k < τ |τ 2 = 0 >)

that satisfy both

M
∣∣∣
τ=0

= Id ,

MMT = Id .

So we obtain again that M = Id + τM1, from the first equation. Additionally, we have
that MMT = Id⇔M1 +MT

1 = 0n, finally one notes that as a a group, it holds

Lie(On) = {M ∈Mn(k)|M = −MT} .

Exercise 3

Consider a group G and let k[G] denote the corresponding group algebra. Let A be an
algebra over k and (Ag)g∈G a family of linear subspaces Ag ⊂ A. We say (A, (Ag)g∈G) is a
graded algebra if the following conditions hold:

• If 1G is the identity of G and 1A the unit of the algebra, then 1A ∈ A1G .

• We have that A = ⊕gAg
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• For any g, h ∈ G, we have AgAh ⊂ Agh.

For any comodule algebra structure δ : A→ A⊗ k[G] we may define a family (Ag)g∈G

Ag = {a ∈ A | δ(a) = a⊗ g}

for all g ∈ G. Show that this yields a bijection between k[G]-comodule algebra structures
on A and gradings {Ag | g ∈ G} of G.

Proof. It is easy to see that if (A, (Ag)g∈G)) is a G-graded algebra, then δ defined at each
Ag via δ : a 7→ a ⊗ g determines a k[G]-comodule structure . The additional requirement
that AgAh ⊆ Agh tells us that this is also a comodule algebra structure. This is the inverse
construction from the one given. It suffices then, to show that if we have a k[G]-comodule
algebra (A, δ), then (A, (Ag)g∈G) is a G-grading.

Since δ(1A) = 1 = 1A ⊗ eid, 1A ∈ Aid. It is also clear that if a ∈ Ag, b ∈ Ah, then
δ(ab) = δ(a)δ(b) = ab⊗ gh, so ab ∈ Agh.

It suffices to show that A = ⊕g∈GAg. Note that if
∑

g∈G λgag = 0 with ag ∈ Ag, then

0 = δ(
∑
g∈G

λgag) =
∑
g∈G

λgag ⊗ g ,

it follows by linear independence, that λg = 0 for any g ∈ G. This concludes that ⊕g∈GAg ⊂
A.

On the other hand, let a ∈ A, and note that there is a unique way of writing δa =∑
g∈G ag ⊗ g. It follows that ag ∈ Ag because (id⊗∆) ◦ δ = (δ ⊗ id) ◦ δ. We conclude that

a ∈ ⊕g∈GAg.

Exercise 4

Consider a group G, k[G] the group algebra and A an algebra over k. Recall from the
previous exercise the definition of G-graded algebra. Additionally, if A is an H-comodule
algebra let Aco H = {v ∈ A|δ(v) = v ⊗ 1} denote the H-coinvariants.

Such G-graded algebra is said to be strongly graded if AgAh = Agh.
Show that Aco k[G] ⊂ A is a k[G] Galois extension if and only if the grading (Ag)g∈G is

strong.
Hint: We can take an expression of 1 ∈ AgAg−1. Use this to show that Ag⊗AidG

Ah → Agh
is an isomorphism.

Proof. In the previous exercise, we have seen that Aco k[G] = AidG , so AidG ⊂ A is a Galois
extension if

canA⊗AidG
A→ A⊗ k[G] ,

is bijective. Note that can acts on Ag ⊗AidG
Ah → Agh ⊗ eh ∼= Agh as the multiplication, so

we have that AidG ⊂ A is a Galois extension if and only if each Ag ⊗AidG
Ah → Agh is an

isomorphism.
To establish one direction of the proof, it is easy to see that if AidG ⊂ A is a Galois

extension, then Ag ⊗AidG
Ah → Agh is surjective, and so A is G-strongly graded.
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On the other hand, if A is strongly graded, then µ : Ag ⊗AidG
Ah → Agh is inverted in

the following way: Take 1 ∈ AidG = Ag−1Ag, so that we can write a =
∑

i vi ⊗ wi where
δvi = vi ⊗ g and δwi = wi ⊗ h.

Consider the map α : Agh → Ag ⊗ Ah given as

x 7→
∑
i

vi ⊗ wix ,

then it is clear that µ ◦ α(x) = µ (
∑

i vi ⊗ wix) =
∑

i viwix = x.
On the the other hand, for a ∈ Ag, b ∈ Ah note that wia ∈ AidG so we have that

α ◦ µ(a⊗ b) = α(ab) =
∑
i

vi ⊗ wiab =
∑
i

viwia⊗ b = a⊗ b .

This concludes that µ is an isomorphism.

4


