Homework Assignment 7 -Solution

Hopf algebras - Spring Semester 2018

Exercise 1

Let k be a field with characteristic 0. Consider the Weyl alebra

$$A = k < x, y | xy - yx = 1 > .$$

- a) Show that A is a simple algebra. That is, the only two-sided ideals of A are 0 and A.
- b) Let k[t] be the polynomial algebra with indeterminate t. We define the endomorphisms $\hat{t}, d \in \operatorname{End}_k(k[t])$ by

$$\hat{t}(t^n) = t^{n+1}, \ n \ge 0.$$

 $d(t^n) = nt^{n-1}, \ n \ge 0 \text{ and } d(1) = 0.$

Consider the subalgebra $k[\hat{t}, d] \subseteq \operatorname{End}(k[t])$. Show that $A \simeq k[\hat{t}, d]$.

Proof of first item. First we note some simple properties of A. It is easy to see that A has a k-basis given by $\{y^i x^j\}_{i,j\geq 0}$. Also note that we have the following equations, that can be easily shown by induction:

$$xy^{i}x^{j} = iy^{i-1}x^{j} + y^{i}x^{j+1}.$$
(1)

$$x^{j}y = jyx^{j-1} + yx^{n}.$$
 (2)

To show that A is simple, suppose that $I \subseteq A$ is a non-zero ideal. Our goal is to show that $k \cap I \neq 0$.

Consider the following total order in \mathbb{N}_0^2 : we say that $(i, j) \leq (i', j')$ if j < j' or if $j = j', i \leq i'$. This is the dictionary order after switching the coordinates. For instance, we have that $(3, 4) \leq (5, 4) \not\leq (6, 1)$.

Take $v \in I$ such that $v = \sum_{(i,j) \leq (i',j')} v_{i,j} y^i x^j$ for minimal (i',j'). Note that if i' > 0, from (1) we have

$$xv - vx = \sum_{(i,j) \le (i'-1,j')} v_{i+1,j}(i+1)y^i x^j \in I,$$

is non-zero, contradicting the minimality of v. Similarly, if i' = 0 and j' > 0, note that from (2) we have

$$yv - vy = \sum_{(i,j) < (0,j')} v'_{i,j} y^i x^j + -ny x^{j'-1} \neq 0,$$

hence the minimal $v \neq 0$ is in k, and we are done.

Proof of second item. We just note that $\hat{t}d - d\hat{t} = 1$, so we have a map $\phi : A \to k < \hat{t}, d >$ that sends $x \mapsto \hat{t}$ and $y \mapsto d$. Since A is simple, and ker $\phi \neq A$, ϕ is an isomorphism.

Exercise 2

Compute the algebras $\operatorname{Lie}(SL_n)$ and $\operatorname{Lie}(O_n)$.

Solutions. The resulting groups are, respectively, isomorphic to $\{M \in M_n(k) | tr(M) = 0\}$ and $\{M \in M_n(k) | M = -M^T\}$.

Indeed, recall that $\operatorname{Lie}(A) = \ker A(\pi : A(k < \tau | \tau^2 = 0 >) \to A(k)).$

So M in ker $SL_n(\pi)$ is a matrix $M = M_0 + \tau M_1 = SL_n(k < \tau | \tau^2 = 0 >)$, where $M_0, M_1 \in M_n(k)$ that satisfies

$$M\Big|_{\tau=0} = Id,$$
$$\det(M) = 1.$$

Note that the first equality is equivalent to $M_0 = Id$. Let $p_{M_1}(x) = \det(M - xId) = \sum_{k=0}^n b_k x^k$ be the characteristic polynomial of the matrix M_1 .

Then $\det(M) = \det(\tau(M_1 - (-\tau^{-1})Id)) = \tau^n p_{M_1}(-\tau^{-1})$. With the fact that $\tau^2 = 0$ we have

$$\det(M) = b_n(-1)^n + b_{n-1}\tau(-1)^{n-1}$$

It is well known that $b_0 = (-1)^n$ and $b_{n-1} = (-1)^{n-1} tr(M_1)$. Hence det(M) = 1 if and only if $tr M_1 = 0$.

Note that the product structure behaves as $(Id + M_1\tau)(Id + M'_1\tau) = Id\tau(M_1 + M'_1)$.

Now to compute $\text{Lie}(O_n) = \ker O_n(\pi)$ we consider the matrices $M \in M_n(k < \tau | \tau^2 = 0 >)$ that satisfy both

$$\begin{split} M\Big|_{\tau=0} &= Id\,,\\ MM^T &= Id\,. \end{split}$$

So we obtain again that $M = Id + \tau M_1$, from the first equation. Additionally, we have that $MM^T = Id \Leftrightarrow M_1 + M_1^T = 0_n$, finally one notes that as a group, it holds

$$\operatorname{Lie}(O_n) = \{ M \in M_n(k) | M = -M^T \}.$$

Exercise 3

Consider a group G and let k[G] denote the corresponding group algebra. Let A be an algebra over k and $(A_g)_{g\in G}$ a family of linear subspaces $A_g \subset A$. We say $(A, (A_g)_{g\in G})$ is a graded algebra if the following conditions hold:

- If 1_G is the identity of G and 1_A the unit of the algebra, then $1_A \in A_{1_G}$.
- We have that $A = \bigoplus_q A_q$

• For any $g, h \in G$, we have $A_g A_h \subset A_{gh}$.

For any comodule algebra structure $\delta: A \to A \otimes k[G]$ we may define a family $(A_q)_{q \in G}$

$$A_g = \{a \in A \mid \delta(a) = a \otimes g\}$$

for all $g \in G$. Show that this yields a bijection between k[G]-comodule algebra structures on A and gradings $\{A_q \mid g \in G\}$ of G.

Proof. It is easy to see that if $(A, (A_g)_{g \in G})$ is a *G*-graded algebra, then δ defined at each A_g via $\delta : a \mapsto a \otimes g$ determines a k[G]-comodule structure. The additional requirement that $A_g A_h \subseteq A_{gh}$ tells us that this is also a comodule algebra structure. This is the inverse construction from the one given. It suffices then, to show that if we have a k[G]-comodule algebra (A, δ) , then $(A, (A_g)_{g \in G})$ is a *G*-grading.

Since $\delta(1_A) = 1 = 1_A \otimes e_{id}$, $1_A \in A_{id}$. It is also clear that if $a \in A_g, b \in A_h$, then $\delta(ab) = \delta(a)\delta(b) = ab \otimes gh$, so $ab \in A_{gh}$.

It suffices to show that $A = \bigoplus_{g \in G} A_g$. Note that if $\sum_{g \in G} \lambda_g a_g = 0$ with $a_g \in A_g$, then

$$0 = \delta(\sum_{g \in G} \lambda_g a_g) = \sum_{g \in G} \lambda_g a_g \otimes g \,,$$

it follows by linear independence, that $\lambda_g = 0$ for any $g \in G$. This concludes that $\bigoplus_{g \in G} A_g \subset A$.

On the other hand, let $a \in A$, and note that there is a unique way of writing $\delta a = \sum_{g \in G} a_g \otimes g$. It follows that $a_g \in A_g$ because $(id \otimes \Delta) \circ \delta = (\delta \otimes id) \circ \delta$. We conclude that $a \in \bigoplus_{g \in G} A_g$.

Exercise 4

Consider a group G, k[G] the group algebra and A an algebra over k. Recall from the previous exercise the definition of G-graded algebra. Additionally, if A is an H-comodule algebra let $A^{co H} = \{v \in A | \delta(v) = v \otimes 1\}$ denote the H-coinvariants.

Such G-graded algebra is said to be strongly graded if $A_g A_h = A_{gh}$.

Show that $A^{\operatorname{co} k[G]} \subset A$ is a k[G] Galois extension if and only if the grading $(A_g)_{g \in G}$ is strong.

Hint: We can take an expression of $1 \in A_g A_{g^{-1}}$. Use this to show that $A_g \otimes_{A_{\mathrm{id}_G}} A_h \to A_{gh}$ is an isomorphism.

Proof. In the previous exercise, we have seen that $A^{co \ k[G]} = A_{id_G}$, so $A_{id_G} \subset A$ is a Galois extension if

$$\operatorname{can} A \otimes_{A_{\operatorname{id}_{C}}} A \to A \otimes k[G],$$

is bijective. Note that can acts on $A_g \otimes_{A_{\mathrm{id}_G}} A_h \to A_{gh} \otimes e_h \cong A_{gh}$ as the multiplication, so we have that $A_{\mathrm{id}_G} \subset A$ is a Galois extension if and only if each $A_g \otimes_{A_{\mathrm{id}_G}} A_h \to A_{gh}$ is an isomorphism.

To establish one direction of the proof, it is easy to see that if $A_{id_G} \subset A$ is a Galois extension, then $A_g \otimes_{A_{id_G}} A_h \to A_{gh}$ is surjective, and so A is G-strongly graded.

On the other hand, if A is strongly graded, then $\mu : A_g \otimes_{A_{\mathrm{id}_G}} A_h \to A_{gh}$ is inverted in the following way: Take $1 \in A_{\mathrm{id}_G} = A_{g^{-1}}A_g$, so that we can write $a = \sum_i v_i \otimes w_i$ where $\delta v_i = v_i \otimes g$ and $\delta w_i = w_i \otimes h$.

Consider the map $\alpha: A_{gh} \to A_g \otimes A_h$ given as

$$x \mapsto \sum_i v_i \otimes w_i x$$
,

then it is clear that $\mu \circ \alpha(x) = \mu \left(\sum_{i} v_i \otimes w_i x\right) = \sum_{i} v_i w_i x = x$. On the the other hand, for $a \in A_g, b \in A_h$ note that $w_i a \in A_{\mathrm{id}_G}$ so we have that

$$\alpha \circ \mu(a \otimes b) = \alpha(ab) = \sum_{i} v_i \otimes w_i ab = \sum_{i} v_i w_i a \otimes b = a \otimes b.$$

This concludes that μ is an isomorphism.

L		
L		
L		
_		