Homework Assignment 7 -Solution

Hopf algebras - Spring Semester 2018

Exercise 1
Let k£ be a field with characteristic 0. Consider the Weyl alebra
A=k<zylrzy—yr=1>.
a) Show that A is a simple algebra. That is, the only two-sided ideals of A are 0 and A.

b) Let k[t] be the polynomial algebra with indeterminate ¢. We define the endomorphisms
t,d € Endg(k[t]) by

(") =t""", n>0.
d(t") = nt"', n>0and d(1) = 0.

Consider the subalgebra kf, d] C End(k[t]). Show that A ~ k[t,d].

Proof of first item. First we note some simple properties of A. It is easy to see that A has
a k-basis given by {y‘z7}; j>o. Also note that we have the following equations, that can be
easily shown by induction:

ry'a? =iy el 4+ ylad T (1)

vy = jyx? ™ 4 ya". (2)

To show that A is simple, suppose that I C A is a non-zero ideal. Our goal is to show
that kN1 # 0.

Consider the following total order in N3: we say that (i,7) < (¢,5') if j < j" or if
j=j4',i <. This is the dictionary order after switching the coordinates. For instance, we
have that (3,4) < (5,4) £ (6,1).

Take v € I such that v =37 s viy'@’ for minimal (7, j'). Note that if i’ > 0, from
(1) we have

v — v = Z v (i 4+ Dy'a? €1,
(4,5)<('=1,5")
is non-zero, contradicting the minimality of v. Similarly, if 7/ = 0 and j' > 0, note that from
(2) we have

yo—vy= Y vly'el + —nya? M #£0,
()< (05")

hence the minimal v # 0 is in k, and we are done. O
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Proof of second item. We just note that td — df = 1, so we have amap ¢ : A — k < t,d >
that sends x +— t and y — d. Since A is simple, and ker ¢ # A, ¢ is an isomorphism. ]

Exercise 2

Compute the algebras Lie(SL,) and Lie(O,,).

Solutions. The resulting groups are, respectively, isomorphic to {M € M, (k)|tr(M) = 0}
and {M € M, (k)|M = —-M"}.

Indeed, recall that Lie(A) = ker A(7 : A(k < 7|7 =0 >) — A(k)).

So M inker SL,(w) is a matrix M = My + 7M; = SL,(k < 7|t = 0 >), where
My, My € M, (k) that satisfies

M| =1d,

T7=0
det(M) =1.

Note that the first equality is equivalent to My = Id. Let py,(z) = det(M — xId) =
Y oreo bez" be the characteristic polynomial of the matrix M.

Then det(M) = det(1(M; — (—771)Id)) = pyr, (—771). With the fact that 72 = 0 we
have

det(M) = b,(—=1)" + b, y7(=1)""*.

It is well known that by = (—1)" and b,y = (—1)""'r(M;). Hence det(M) = 1 if and
only if trM; = 0.

Note that the product structure behaves as (Id + My7)(Id + M{7) = Idr (M, + Mj).

Now to compute Lie(O,,) = ker O,, () we consider the matrices M € M, (k < 7|t> =0 >)
that satisfy both

M| =1Id,

7=0
MMT = Id.

So we obtain again that M = Id 4+ 7 M, from the first equation. Additionally, we have
that MMT = Id < M; + M! = 0, finally one notes that as a a group, it holds

Lie(O,) = {M € M,(k)|M = —M"}.

Exercise 3

Consider a group G and let k[G] denote the corresponding group algebra. Let A be an
algebra over k and (A4,),cc a family of linear subspaces A; C A. We say (A4, (Ag)gec) is a
graded algebra if the following conditions hold:

o If 15 is the identity of G and 14 the unit of the algebra, then 14 € A,,.

e We have that A = @ A4,



e For any g,h € G, we have A;A;, C Ag,.

For any comodule algebra structure 6 : A - A ® k[G] we may define a family (4,),ecc
Ay={acA|d(a) =a®yg}

for all g € G. Show that this yields a bijection between k[G]-comodule algebra structures
on A and gradings {A, | g € G} of G.

Proof. 1t is easy to see that if (A, (4)sec)) is a G-graded algebra, then § defined at each
A, via § 1 a — a ® g determines a k[G]-comodule structure . The additional requirement
that A;A, C Ay, tells us that this is also a comodule algebra structure. This is the inverse
construction from the one given. It suffices then, to show that if we have a k[G]-comodule
algebra (A, 0), then (A, (A,),eq) is a G-grading.

Since 0(14) = 1 = 14 ® €4, 14 € Ajq. It is also clear that if a € A,,b € A;, then
d(ab) = 6(a)d(b) = ab ® gh, so ab € Ag,.

It suffices to show that A = @,cqAy. Note that if deG Agag = 0 with ay, € Ay, then

025(2/\9%) = Z/\gag@)ga

geG geG

it follows by linear independence, that A\; = 0 for any g € G. This concludes that ©ycq Ay C
A.

On the other hand, let a € A, and note that there is a unique way of writing da =
> _gec g ® g. 1t follows that a, € A, because (id ® A)od = (0 ®id) o §. We conclude that
a € @QGGAg' D

Exercise 4

Consider a group G, k[G] the group algebra and A an algebra over k. Recall from the
previous exercise the definition of G-graded algebra. Additionally, if A is an H-comodule
algebra let A # = {v € A|§(v) = v ® 1} denote the H-coinvariants.

Such G-graded algebra is said to be strongly graded if A;A, = Agy,.

Show that A C A is a k[G] Galois extension if and only if the grading (A),ec is
strong.

Hint: We can take an expression of 1 € AgA,-1. Use this to show that A9®Aidc Ap — Agn
18 an isomorphism.

Proof. In the previous exercise, we have seen that A« *G = A so A, C A is a Galois
extension if

cand ®y, A — AR K[G],

is bijective. Note that can acts on A, ® A Ap — Ag, @ ey, = Agy, as the multiplication, so
we have that Ajq, C A is a Galois extension if and only if each A, ® 4, aw Ap — Agp is an
isomorphism.

To establish one direction of the proof, it is easy to see that if A, C A is a Galois
extension, then Ay ®a,, , Ap — Agp is surjective, and so A is G-strongly graded.



On the other hand, if A is strongly graded, then p : A @A, A — Ay, is inverted in
the following way: Take 1 € Ajq, = A;-14,, so that we can write a = ), v; ® w; where
ov; = v; ® g and dw; = w;  h.

Consider the map o : Ay, = A, ® Ay, given as

T — E Vi @ W;T ,
i

then it is clear that poa(z) = p (0, v @ wir) =) vwr = .
On the the other hand, for a € A,,b € Aj, note that w;a € Ajq,, so we have that

aopla®b) = alab) :Zvi®wiab:2mwia®b:a®b.

) %

This concludes that p is an isomorphism. O]



