Analysis 1 für Lehramt, Prüfung am 4.5.2012 (Winkler)

Name, Matrikelnummer:

Mündliche Prüfung (bitte ankreuzen):

- o Noch heute (Fr. 4.5.) um 16 Uhr.
- o Nach persönlicher Vereinbarung ab Di, 8.5.

Hinweise bevor Sie beginnen:

- 1. Die einzelnen Teilfragen haben ungefähr gleiches Gewicht.
- 2. Ihre Arbeitszeit beträgt 100 Minuten.
- 3. Vergessen Sie nicht auf die Rückseite der Angabe.
 - 1. (a) Sei ϕ ein zweistelliges Prädikat. Für die prädikatenlogischen Formeln

$$\Phi : \leftrightarrow \forall x \exists y : \phi(x, y) \quad \text{und} \quad \Psi : \leftrightarrow \exists y \forall x : \phi(x, y)$$

ist genau eine der beiden Implikationen $\Phi \to \Psi$ und $\Psi \to \Phi$ allgemeingültig. Geben Sie zur falschen Implikation (welche ist es?) ein Gegenbeispiel an. Anleitung: Beziehen Sie die Variablen x, y auf einen geeigneten Zahlenbereich (z.B. \mathbb{N}) als Grundmenge und betrachten Sie für $\phi(x, y)$ das zweistellige Prädikat x < y.

- (b) Welche mengentheoretische Inklusion entspricht der allgemeingültigen Formel aus (a)? Anleitung: Als eine der beiden Mengen können Sie $\bigcap_{i \in I} \bigcup_{j \in J} A_{i,j}$ verwenden. (Die $A_{i,j}$ stammen aus einer mit $i \in I$ und $j \in J$ indizierten Familie von Mengen.)
- 2. Bekanntlich heißt $p \in \mathbb{N}$ eine Primzahl, wenn $p \geq 2$ und wenn 1 und p die einzigen Teiler von p in \mathbb{N} sind, d.h. wenn es keine Zahlen $a,b \in \mathbb{N}$ gibt mit 1 < a,b < p und p = ab. Mit \mathbb{P} sei die Menge der Primzahlen bezeichnet.
 - (a) Jede natürliche Zahl $n \geq 2$ ist als Produkt $n = \prod_{i=1}^k p_i$ von Primzahlen $p_i \in \mathbb{P}$ darstellbar. Denn wäre dies nicht der Fall, so gäbe es ein kleinstes $n \in \mathbb{N}$, für welches die Behauptung falsch ist, nennen wir es n_0 . Da jede Primzahl als Produkt von einem einzigen Faktor die behauptete Eigenschaft besitzt, muss n_0 zusammengesetzt sein, also $n_0 = ab$ mit $1 < a, b < n_0$. Weil n_0 minimal gewählt war und $1 \leq a, b < n_0$ gilt, müssen $1 \leq a, b < n_0$ und $1 \leq a, b < n_0$ gilt, müssen $1 \leq a, b < n_0$ wire behauptete Eigenschaft besitzen. Leiten Sie hieraus einen Widerspruch ab.
 - (b) Sind p_1, p_2, \ldots, p_k irgendwelche Primzahlen $k \geq 1$, so teilt keine von Ihnen die Zahl $N := \prod_{i=1}^k p_i + 1$. Nach Teil (a) ist N aber als Produkt gewisser (somit anderer) Primzahlen darstellbar. Sei p eine davon. Verwenden Sie diese Beobachtung, um zu zeigen, dass es zu jedem $n \in \mathbb{N}$, $n \geq 2$, mindestens ein $p \in \mathbb{P}$ mit p > n gibt.
 - (c) Für $n \in \mathbb{N}$ bezeichne p(n) die kleinste Primzahl > n (welche nach (b) und dem Satz vom kleinsten Element existiert). Wir definieren die Abbildung $\varphi : \mathbb{N} \to \mathbb{P}$ rekursiv durch $\varphi(0) := p(0) = 2$ und $\varphi(n+1) := p(\varphi(n))$. Geben Sie die Werte $\varphi(n)$ für $n = 1, 2, \ldots, 10$ an, und geben Sie eine Eigenschaft der Abbildung $\varphi : \mathbb{N} \to \mathbb{P}$ an, aus der die Unendlichkeit der Menge \mathbb{P} folgt.
- 3. Im zweidimensionalen Vektorraum \mathbb{R}^2 über \mathbb{R} betrachten wir die Summennorm $||.||_1$, die euklidische Norm $||.||_2$ und die Supremumsnorm $||.||_{\infty}$. Die zugehörigen Metriken seien mit d_1, d_2 , bzw. d_{∞} bezeichnet.
 - (a) Definieren Sie für alle drei Möglichkeiten $||.||_p$, $p = 1, 2, \infty$, die Norm $||x||_p$ eines Vektors $x = (x_1, x_2) \in \mathbb{R}^2$.
 - (b) Welche Eigenschaften verlangt man generell von einer reellwertigen Funktion $||.||: V \to \mathbb{R}$ auf einem Vektorraum V über \mathbb{R} , damit ||.|| eine Norm ist?

- (c) Wenn $||.||: V \to \mathbb{R}$ eine Norm ist, so definiert $d = d_{||.||}: V^2 \to \mathbb{R}$, $(x, y) \mapsto ||x y||$, eine Metrik auf V. Welche Eigenschaften von d muss man nachprüfen, wenn man dies beweisen möchte?
- (d) Beweisen Sie die Dreiecksungleichung für die in Teil (c) definierte Metrik $d = d_{||.||}$ (bei vorgegeber Norm ||.||).
- (e) Seien $K_p := \{x \in \mathbb{R}^2 : ||x||_p \le 1\}, \ p = 1, 2, \infty$, die abgeschlossenen Einheitskugeln bezüglich der drei induzierten Normen d_1, d_2 bzw. d_{∞} . Skizzieren Sie diese drei Mengen K_p .
- (f) Bezeichne $n(p), p = 1, 2, \infty$, das maximale n mit folgender Eigenschaft: Es gibt eine Menge $T_p \subseteq K_p$ mit $|T_p| = n$ derart, dass je zwei Punkte $x \neq y \in T_p$ einen Abstand $d_p(x,y) \geq 1$ haben. Zeigen Sie $n(\infty) \geq 9$ (tatsächlich gilt Gleichheit) durch Angabe einer entsprechenden Menge T_{∞} . (Unmissverständliche Skizze genügt!)
- (g) Wie (f), nur mit p = 1 (statt $p = \infty$).
- (h) Wie (f) und (g), nur mit p=2 (statt $p=\infty,1$) und $n(2)\geq 7$.
- 4. Die Folge \bar{a} reeller Zahlen $a_n, n \in \mathbb{N}$, sei rekursiv definiert durch: $a_0 := 0$ und $a_{n+1} := a_n + 1$, sofern $a_n \leq \sqrt{n}$, bzw. $a_{n+1} := 0$ sonst.
 - (a) Geben Sie die Glieder a_0, a_1, \ldots, a_{10} der Folge \bar{a} an.
 - (b) Geben Sie die Wertemenge $\{a_n: n \in \mathbb{N}\}\$ der Folge \bar{a} an.
 - (c) Geben Sie die Menge $\mathrm{HP}(\bar{a})$ der Häufungspunkte dieser Folge an.
 - (d) Definieren Sie allgemein, wann ein Punkt $x \in X$ in einem metrischen Raum (X, d) Häufungspunkt einer Folge $(x_n)_{n \in \mathbb{N}}$ in X heißt, wann Grenzwert $x = \lim_{n \to \infty} x_n$.
 - (e) Die Menge $\operatorname{HP}(\bar{x})$ aller Häufungspunkte einer beliebigen Folge $\bar{x}=(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) ist abgeschlossen. Um dies zu beweisen, müssen wir für ein beliebiges y im Abschluss $\overline{\operatorname{HP}}(\bar{x})$ zeigen, dass y selbst Häufungspunkt der Folge \bar{x} ist. Wir argumentieren dafür wie folgt (eine Skizze für $(X,d)=(\mathbb{R}^2,d_2)$ kann sehr hilfreich sein!):
 - Sei $\varepsilon > 0$ beliebig vorgegeben, so liegt (weil y im Abschluss liegt) in der ε -Kugel um y ein Häufungspunkt y_0 von \bar{x} . Also liegen in jeder Umgebung U von y_0 unendlich viele Glieder x_n . Zweckmäßigerweise wählen wir U als Kugel um y_0 mit einem positiven Radius $\varepsilon' < \varepsilon d(y, y_0)$. So ein ε' existiert.
 - Führen Sie diesen Beweis zu Ende.
 - (f) Seien $x_n, y_n \in \mathbb{R}$, $n \in \mathbb{N}$, mit $x_n \to 2$ und $y_n \to 3$ für $n \to \infty$. Beweisen Sie $\lim_{n \to \infty} (x_n + y_n) = 5$, indem Sie sich auf die Definition des Grenzwertes beziehen.