Algebra, Prüfung am 23.11.2012, Winkler

Name, Matrikelnummer (bitte ausfüllen):

Mündliche Prüfung: Möglichst in Dreier- und/oder Vierergruppen, voraussichtlich ab 16.11. Bitte melden Sie sich für die Terminvereinbarung per e-mail an reinhard.winkler@tuwien.ac.at.

Hinweise bevor Sie beginnen:

- 1. Die einzelnen Teilfragen haben ungefähr gleiches Gewicht.
- 2. Ihre Arbeitszeit beträgt 100 Minuten.
 - 1. Die Gruppe der Symmetrien eines regelmäßigen n-Ecks heißt Diedergruppe und wird mit D_n bezeichnet. Sie wird erzeugt von einer Drehung a und einer Spiegelung b. Formal lässt sich D_n als Permutationsgruppe auf der Menge der Eckpunkte auffassen. Entsprechend definieren wir:

 D_n , $n \in \mathbb{N}$, ist jene Untergruppe der symmetrischen Gruppe S_n , die von den beiden Elementen a = (123...n) (Zyklus, Drehung) und b, dem Produkt aller Transpositionen (ij) mit $2 \le i < j \le n$ und i + j = n + 2 (Spiegelung mit Fixpunkt 1), erzeugt wird.

- (a) Begründen Sie, warum b die Ordnung 2 hat.
- (b) Verifizieren Sie die Formel $ba = a^{n-1}b$.
- (c) Zeigen Sie, dass sich jedes Element von D_n in der Form a^k oder a^kb darstellen lässt.
- (d) Wie viele Elemente hat D_n ? (Unterscheiden Sie die vier Fälle $n = 0, 1, 2, \geq 3$.)
- (e) Zeigen Sie, dass D_n für $n \geq 3$ nicht abelsch ist.
- (f) Finden Sie einen abelschen Normalteiler N von D_n , für den D_n/N abelsch ist.
- (g) Für welche n ist D_n einfach? (Begründung!)
- 2. Wir betrachten den Ring $\mathbb{Z}[i] = \{a+ib: a,b \in \mathbb{Z}\}$ der Gaußschen Zahlen, den kleinsten Unterring von \mathbb{C} , der sowohl \mathbb{Z} als auch die imaginäre Einheit i enthält. In den Übungen wurde gezeigt, dass $H: \mathbb{Z}[i] \to \mathbb{N}$, $H(z) := |z|^2$ eine euklidische Bewertung auf $\mathbb{Z}[i]$ und außerdem multiplikativ ist, d.h. $H(z_1z_2) = H(z_1)H(z_2)$ erfüllt. Weiters bezeichne M die Menge aller $z = a + ib \in \mathbb{Z}[i]$ mit $H(z) \leq 10$, $M_+ := \{z = a + ib \in M: a,b \geq 0\}$.
 - (a) Tragen Sie alle Elemente von M_+ in einer Skizze der komplexen Zahlenebene ein und bestimmen Sie die Anzahlen $|M_+|$ und |M|.
 - (b) Assoziiertenklassen C lassen sich in der Form vE mit einem Vertreter v und der Einheitengruppe E schreiben. Zehn solche Assoziiertenklassen C_j , $j=1,2,\ldots,10$, sind in M enthalten. Geben Sie E und zehn Vertreter $v_j \in C_j$ an.
 - (c) Begründen Sie: Ist H(z) eine Primzahl, so ist z irreduzibel in $\mathbb{Z}[i]$.
 - (d) Ist die Zahl 2 in $\mathbb{Z}[i]$ reduzibel oder irreduzibel?
 - (e) Welche der $v_j \in C_j$ aus (b) sind irreduzibel?
 - (f) Welche davon sind prim? (Begründung!)
 - (g) Überprüfen Sie direkt anhand der Definition einer algebraischen Erweiterung, ob der Körper $Q[i] = \{a+ib: a,b \in \mathbb{Q}\}$ algebraisch über \mathbb{Q} ist.