Analysis 1 für Lehramt, Prüfung am 28.9.2012 (Winkler)

Name, Matrikelnummer:

Mündliche Prüfung: Bitte melden Sie sich per e-mail bei reinhard.winkler@tuwien.ac.at zwecks Terminvereinbarung.

Hinweise bevor Sie beginnen:

- 1. Die einzelnen Teilfragen haben ungefähr gleiches Gewicht.
- 2. Ihre Arbeitszeit beträgt 100 Minuten.
 - 1. Auf \mathbb{R}^2 bezeichne wie üblich $||.||_1$ die Summen-, $||.||_2$ die euklidische und $||.||_{\infty}$ die Maximumsnorm, $d_p(x,y):=||x-y||_p$ die zugehörige Metrik. Außerdem bestehe die Menge $M_{p,c}$ aus jenen Punkten $a=(x,y)\in [-1,1]^2\subseteq \mathbb{R}^2$, für die es einen Punkt b=(k,l) mit $k,l\in\mathbb{Z}$ gibt, so dass $d_p(a,b)\leq c$ gilt. Skizzieren Sie:
 - (a) die Menge $M_{1,\frac{1}{3}}$
 - (b) die Menge $M_{2,\frac{1}{2}}$
 - (c) das Innere der Menge $M_{\infty,\frac{1}{2}}$ in \mathbb{R}^2
 - (d) den Rand der Menge $M_{\infty,\frac{1}{3}}$ in \mathbb{R}^2
 - (e) Welche der Mengen aus (a), (b), (c) und (d) sind kompakt? (Begründung)
 - (f) Wie lautet die Definition von Kompaktheit eines beliebigen topologischen Raumes X?
 - 2. (a) Geben Sie die strenge Definition, was für reelle Zahlen $x_n, n \in \mathbb{N}$, und x die Formel $\lim_{n\to\infty} x_n = x$ bedeutet.
 - (b) Geben Sie die rekursive Definition der Partialsummen $s_n, n \in \mathbb{N}$, der Reihe $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbb{R}$.
 - (c) Geben Sie die strenge Definition, was die Formel $\sum_{n=1}^{\infty} a_n = s$ bedeutet.
 - (d) Beweisen Sie unter Bezugnahme auf die Definition aus (a): Aus $\lim_{n\to\infty} x_n = x$ und $\lim_{n\to\infty} y_n = y$ folgt $\lim_{n\to\infty} (x_n y_n) = x y$.
 - (e) Beweisen Sie: Konvergiert eine Reihe $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbb{R}$, so bilden ihre Glieder eine Nullfolge. (Hinweis: Sie dürfen $\lim_{n\to\infty} s_n = \lim_{n\to\infty} s_{n+1}$ und (d) verwenden.)
 - 3. Bezeichne \mathbb{P} die Menge aller Primzahlen, $\mathbb{P}_{100} := \{ p \in \mathbb{P} : p \leq 100 \}$. In dieser Aufgabe soll die Anzahl $|\mathbb{P}_{100}|$ bestimmt werden, allerdings nicht durch schlichtes Abzählen, sondern durch Einsatz des Inklusions-Exklusionsprinzips. Für jedes $m \in \mathbb{N}$ sei $V_m = \{nm : n \in \mathbb{N}, 0 < nm \leq 100 \}$ und |x| (für ein beliebiges $x \in \mathbb{R}$) die größte ganze Zahl $k \leq x$.
 - (a) Begründen Sie: Jede ganze Zahl k>1, die keine Primzahl ist, besitzt einen Primteiler p mit $p\leq \sqrt{k}.$
 - (b) Wegen (a) ist eine Zahl $k \in \{2, 3, 4, ..., 100\}$, die durch keine der Primzahlen p = 2, 3, 5, 7 teilbar ist, selbst eine Primzahl. Um die Elemente von \mathbb{P}_{100} zu zählen, interessieren wir uns zunächst für die Menge $M := V_2 \cup V_3 \cup V_5 \cup V_7$. Stellen Sie die Zahl |M| gemäß dem Inklusions-Exklusionsprinzip als alternierende Summe von Kardinalitäten von Schnitten gewisser V_p mit $p \in \{2, 3, 5, 7\}$ dar.
 - (c) Für paarweise verschiedene Primzahlen p_1, \ldots, p_n und $m = \prod_{i=1}^n p_i$ gilt: $V_m = \bigcap_{i=1}^n V_{p_i}$. Benutzen Sie diese Beziehung, um in der alternierenden Summe aus (b) die auftretenden Schnitte durch geeignete Mengen V_m zu ersetzen.
 - (d) Bestimmen Sie nun $|\mathbb{P}_{100}|$, indem Sie folgendermaßen vorgehen: Begründen Sie die Beziehung $|\mathbb{P}_{100}| = 100 |M| + |\{2,3,5,7\}| |\{1\}|$ und verwenden Sie in der in (c) gewonnenen Darstellung von |M| die offensichtliche Formel $|V_m| = \lfloor \frac{100}{m} \rfloor$ für $m = 1, 2, \ldots$