Analysis 2 für Lehramt, Prüfung am 23.11.2012 (Winkler)

Name, Matrikelnummer:

Mündliche Prüfung: Bitte melden Sie sich per e-mail an reinhard.winkler@tuwien.ac.at zwecks Terminvereinbarung.

Hinweise bevor Sie beginnen:

- 1. Die einzelnen Teilfragen haben ungefähr gleiches Gewicht.
- 2. Ihre Arbeitszeit beträgt 100 Minuten.
- 3. Vergessen Sie nicht auf die Rückseite der Angabe.
- 4. Die einzelnen Teile jeder Aufgabe hängen zusammen. Dies schafft nicht nur Abhängigkeiten, sondern ist oft auch als Hilfe gedacht.
 - 1. (a) Angenommen $f:[a,b] \to \mathbb{R}$ sei stetig mit f(a) < 0 < f(b) und $f(x) \neq 0$ für alle $x \in [a,b]$. Wir definieren rekursiv eine Folge von Intervallen $I_n = [a_n,b_n]$, indem wir mit $I_0 = [a,b]$ beginnen und als I_{n+1} eine der beiden Hälften $[a_n,\frac{a_n+b_n}{2}]$ oder $[\frac{a_n+b_n}{2},b_n]$ von I_n nehmen, so dass $f(a_{n+1})$ und $f(b_{n+1})$ unterschiedliches Vorzeichen haben. Offenbar gilt $a = a_0 \leq a_1 \leq a_2 \leq \ldots \leq b_2 \leq b_1 \leq b_0 = b$, weshalb $a_\infty := \lim_{n \to \infty} a_n$ und $b_\infty := \lim_{n \to \infty} b_n$ existieren. Setzen Sie die Argumentation fort, bis ein Widerspruch auftritt.
 - (b) Formulieren Sie jenen wichtigen Satz, der in (a) bewiesen wurde.
 - (c) Beschreiben Sie alle zusammenhängenden Teilmengen von \mathbb{R} .
 - (d) Ein allgemeiner Satz besagt, dass stetige Bilder zusammenhängender Mengen zusammenhängend sind. Wie lässt sich damit und unter Verwendung von (c) die in (a) bewiesene Aussage auf anderem Wege herleiten?
 - (e) Begründen Sie, warum die Menge $M:=\{(x,y)\in\mathbb{R}^2:\ x^2+y^2=1\}$ zusammenhängend ist, indem Sie eine surjektive und stetige Funktion $f:X\to M$ auf einer zusammenhängenden Menge X angeben.
 - 2. (a) Wann nennt man eine Funktion $f:X\to Y$ zwischen zwei metrischen Räumen (X,d_X) und (Y,d_Y) gleichmäßig stetig?
 - (b) Erklären Sie, warum die stetige Funktion $f:]0, \infty[\to \mathbb{R}, x \mapsto \frac{1}{x}$ nicht gleichmäßig stetig ist, indem Sie zu beliebig vorgegebenem $\delta > 0$ zwei Punkte $x_1, x_2 > 0$ angeben mit $|x_1 x_2| < \delta$ und $|f(x_1) f(x_2)| \ge 1 =: \varepsilon$.
 - (c) Seien (X, d_X) und (Y, d_Y) metrische Räume, $f: X \to Y$ gleichmäßig stetig und $(x_n)_{n \in \mathbb{N}}$ eine Cauchyfolge in X. Zeigen Sie, dass dann $(f(x_n))_{n \in \mathbb{N}}$ eine Cauchyfolge in Y ist.
 - (d) Definiert man die Funktion $f_0:\mathbb{Q}\to\mathbb{R},\ f_0(x):=a^x$ für a>0 und $x\in\mathbb{Q}$ wie in der Vorlesung, so zeigt man relativ leicht, dass f_0 auf jedem rationalen Intervall $[\alpha,\beta]\cap\mathbb{Q}$ gleichmäßig stetig ist. Ein beliebiges (nicht notwendig rationales) $x\in[\alpha,\beta]$ lässt sich als $x=\lim_{n\to\infty}x_n$ mit $x_n\in[\alpha,\beta]\cap\mathbb{Q}$ schreiben. Folglich ist (c) anwendbar, und man erhält wegen der Vollständigkeit von \mathbb{R} einen Grenzwert $f(x)=a^x:=\lim_{n\to\infty}a^{x_n}$. Weil sich dieser Grenzwert als unabhängig von der speziellen Wahl der gegen x konvergenten Folge $(x_n)_{n\in\mathbb{N}}$ erweist, ist somit die global stetige Exponentialfunktion $f=\exp_a:\mathbb{R}\to\mathbb{R},$ $x\mapsto a^x$ zur Basis a eindeutig definiert.
 - Angenommen die Rechenregel $a^{x+y} = a^x a^y$ sei bereits für alle $x, y \in \mathbb{Q}$ gesichert. Wie lässt sich diese Regel auf alle $x, y \in \mathbb{R}$ ausdehnen? Anleitung: Man betrachte die stetigen Funktionen $g_1(x, y) := a^{x+y}$ und $g_2(x, y) := a^x a^y$.
 - (e) Es sei bekannt, dass die Funktion $\exp_a : \mathbb{R} \to \mathbb{R}, x \mapsto a^x$, an der Stelle 0 differenzierbar ist. Zeigen Sie unter Verwendung von (d), dass \exp_a dann sogar an einem beliebigen Punkt $x_0 \in \mathbb{R}$ die Ableitung $\exp'_a(x_0) = \exp_a(x_0) \exp'_a(0)$ hat.

- 3. Sei $f:[a,b]\to\mathbb{R},\ a\le b$, Riemann-integrierbar und $F:[a,b]\to\mathbb{R}$ definiert durch $F(x):=\int_a^x f(t)\,dt$.
 - (a) Es gelte $\alpha \leq f(x) \leq \beta$ für alle $x \in [a,b]$. Betrachten Sie die (triviale) Zerlegung $Z = \{a = x_0 < b = x_1\}$ und die zugehörigen Riemannschen Ober- und Untersummen O(f,Z) und U(f,Z). Begründen Sie unter Verwendung der Definition des Riemann-Integrals die Ungleichung $\alpha(b-a) \leq \int_a^b f(x) \, dx \leq \beta(b-a)$.
 - (b) Sei $\varepsilon > 0$ beliebig vorgegeben und $x_0 \in]a,b[$. Unter welcher Voraussetzung an f lassen sich unter Verwendung von (a) eine Umgebung U von x_0 und ein Intervall I der Länge $\le \varepsilon$, welches $f(x_0)$ enthält, finden derart, dass $\frac{F(x)-F(x_0)}{x-x_0} \in I$ für alle $x \in U$.
 - (c) Formulieren Sie eine Version des Hauptsatzes der Differential- und Integralrechnung, die man aus (b) ablesen kann.
 - (d) Seien F_1 und F_2 Stammfunktionen von f. Wie lässt sich mit Hilfe des Mittelwertsatzes zeigen, dass es ein $c \in \mathbb{R}$ gibt, so dass für alle $x \in D$ gilt: $F_2(x) = F_1(x) + c$?
 - (e) Erklären Sie, wie die Beziehung $\int_0^1 x^2 dx = \frac{1}{3}$ aus (c) und (d) folgt.