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Abstract. Let X be a metrizable one-dimensional continuum. In the
present paper we describe the fundamental group of X as a subgroup
of its Čech homotopy group. In particular, the elements of the Čech
homotopy group are represented by sequences of words. Among these
sequences the elements of the fundamental group are characterized by a
simple stabilization condition. This description of the fundamental group
is used to give a new algebro-combinatorial proof of a result due to Eda
on continuity properties of homomorphisms from the fundamental group
of the Hawaiian earring to that of X.

1. Introduction

In the 1950s Curtis and Fort [6, 7, 8] studied properties of fundamental

groups of locally complicated spaces. Starting with the work of Cannon and

Conner as well as Eda and Kawamura at the turn of the millennium (see

e.g. [2, 12]) the investigation of fundamental groups of such spaces got a new

impetus. Meanwhile, properties of fundamental groups of one-dimensional

(cf. for instance [1, 3, 10, 11]) and planar (see [5, 13]) spaces were derived.

Especially the description of such fundamental groups in terms of words

turned out to be useful. Cannon and Conner gave such a description for

the fundamental group of the Hawaiian Earring (see Figure 1 left side) and

in Akiyama et al. [1] we gave a representation of the fundamental group

π(△) of the Sierpiński gasket △ (see Figure 1 right side) in terms of words.

Since △ is a one-dimensional subset of R2 it is known from Eda and Kawa-

mura [12] that π(△) can be embedded in the Čech homotopy group π̌(△)

which is known to be a projective limit of free groups. In [1] we were able to

endow the projective limit defining π̌(△) with a word structure. Moreover,

we could characterize the elements of the subgroup π(△) by a simple stabi-

lizing condition. Recently, Diestel and Sprüssel [10] provided descriptions of

Freudenthal compactifications of locally finite connected graphs by similar

means.
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Figure 1. The Hawaiian earring (left) and the Sierpiński
gasket (right) — two well studied examples of locally compli-
cated spaces.

The first aim of this paper is to extend this kind of description to a

large class of spaces. Indeed, we are able to describe the fundamental group

of any metrizable one-dimensional continuum X in terms of words. As an

important technical tool we use a slight modification of a handle body con-

struction employed by Cannon and Conner [3]. In particular, with the help

of this construction we equip the space X with a structure that allows us

to encode loops in X by words. While in the construction for the Sierpiński

gasket △ the letters correspond to (local) cut points of △, in our setting

letters represent (local) cut sets. This generalization turns out appropriate

to extend the approach in [1] for the special case of the Sierpiński gasket to

the class of all metrizable one-dimensional continua.

The difference of our treatment compared to other approaches to this

topic is twofold: Firstly, we refrain from describing a loop by (an infinite

sequence of) edges but instead we use a sequence (indexed by the approxi-

mation level) of finite words whose letters correspond to the (local) cut sets

the loop crosses. Each word provides information which areas (separated by

the cut set letters) the loop traverses. In combination with the handlebody

construction this finer and finer approximation to the loop as well as to the

space X from outside turns out to do the right job. It avoids complications

occurring when approximating the loop by edge-sequences and the space

from inside where usually a topological closure operation is involved. The

second new ingredient concerns the use of semigroups instead of groups. It

is due to the fact that the word sequences describing loops carry a natu-

ral projective semigroup structure and homotopy of loops is reflected by

appropriate cancelation rules applied to semigroup words. Altogether, the

semigroup structure provides the crucial tool to identify those elements in

π̌(X) which correspond to homotopy classes of X.
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In the second part of the paper our description of the fundamental group

is applied in order to give a quite elementary algebro-combinatorial proof

of a result due to Eda [11]. We show that each homomorphism from the

fundamental group of the Hawaiian earring E to the fundamental group

of a metrizable one-dimensional continuum X is induced by a continuous

mapping ψ : E → X (Theorem 5.10). Furthermore, we obtain an “infinite

homomorphism property” for such homomorphisms (Theorem 5.3).

The paper is organized as follows. In Section 2 we define the handlebod-

ies and establish some preliminary results necessary for the proof of our first

main result. As indicated above, some steps are similar to the case of the

Sierpiński gasket, other parts need different ideas in order to capture the

considerably more general situation. In Section 3 we state our description

of the fundamental group (Theorem 3.2) and finish its proof. This result

contains a simple criterion for an element of the Čech homotopy group to

belong to the fundamental group of a given space. Moreover, it allows to

find a canonical “shortest” representative for each element of the funda-

mental group. At the end of this section we indicate how our handlebody

construction applies to the Sierpiński carpet (sometimes also called Menger

curve) as an example. Section 4 contains cancelation rules for the words in

the fundamental group. These rules are important in Section 5 where we

prove Eda’s result on homomorphisms mentioned above by means of our

word description of the fundamental group. At the beginning of Section 5

for the convenience of the reader we provide guidelines to our proof of Eda’s

theorem which requires some technical effort.

2. Definition of the handles

Throughout this paper let X be a metrizable one-dimensional contin-

uum1. Then (see Hurewicz and Wallman [16] or Cannon and Conner [3]) X

can be embedded in the three dimensional Euclidean space and represented

as the intersection of handle bodies Hn, n ∈ N, such that

H0 ⊃ H1 ⊃ H2 ⊃ . . . ⊃
⋂

n∈N

Hn = X.

Each handle body Hn consists of finitely many 0-handles joined by finitely

many 1-handles. The 0-handles as well as the 1-handles are compact subsets

of R3 homeomorphic to a closed ball. The diameter of each of these handles

is bounded from above by 1
n
in the maximum norm ‖ · ‖∞. Each 1-handle h

is attached to two adjacent 0-handles by an attaching disk. These attaching

1Note that in view of Urysohn’s metrization theorem for compact spaces metrizability
is equivalent to second-countability.
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disks are separated by an intermediate belt disk B(h) contained in the 1-

handle. This construction shows thatHn can be realized as a CW complex in

R3. W.l.o.g. we assume that each 1-handle in Hn has nonempty intersection

with X and that each 0-handle is attached to at least one 1-handle (see

Figure 2 for an example). Thus the connectedness of X implies that Hn is

connected.

X

Figure 2. An example for a handle body. The set X is indi-
cated in gray. At this level n, the big triangle in X is “seen”
to be a nontrivial loop in the handle body, while the small
circle on the left as well as the thin triangle in the center are
not captured by this handle body. To capture them, a finer
handle body (i.e., a larger value of n) is needed.

Consider a fixed 0-handle h in Hn. Observe that the union U of all the

belt disks of the 1-handles attached to h form a separator of Hn. The star

of h, St(h), is the component of Hn \ U containing h. Note that each belt

disk of Hn is contained in the boundary of exactly two stars.

With Hn we associate a graph 〈Vn, En〉 where the set Vn of vertices

consists of the 0-handles of Hn and two vertices are connected by an edge

in En if and only if the associated 0-handles are connected by a 1-handle.

Thus the edges are in a one to one correspondence to the 1-handles of Hn.

Note that the graph 〈Vn, En〉 can be drawn in R3 as a deformation retract

of Hn in the following way.

For every 1-handle h of Hn choose a simple arc in h joining the attaching

disks. By the CW structure of the handle body there is a deformation retrac-

tion of the 1-handle on the union of this simple arc and the two attaching

disks. This can be done in a way that B(h) is retracted to a single point bh,

which we will call the midpoint of B(h). By the Homotopy Extension The-

orem for CW complexes this retraction can be performed for each 1-handle
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of Hn separately. Next, for every 0-handle h we choose an arbitrary point

mh (called midpoint of h) in the interior of h and arcs connecting mh with

the end point of each arc contained in the attached retracted 1-handles.

The 0-handle h can be deformation retracted onto these arcs. Again, by

the Homotopy Extension Theorem for CW complexes this retraction can

be performed for each 0-handle of Hn separately. The result of all these

deformation retractions is the deformation retraction rn which deformation

retracts Hn onto the drawing of 〈Vn, En〉.

In the following we assume w.l.o.g. that Hn is defined in a way that

〈Vn, En〉 does not contain cycles of length ≤ 2. Indeed, cycles of length ≤ 2

can easily be ruled out by splitting a 1-handle by an intermediate 0-handle

at certain places.

Now we explicate how Hn+1 is embedded in Hn. For each n the handle

body Hn+1 lies in the interior of Hn and if a handle h′ of Hn+1 intersects

the belt disk B(h) of a 1-handle h of Hn then we may assume that h′ is

a 1-handle of Hn+1 and h′ ∩ B(h) = B(h′). In this case we call B(h) a

predecessor of B(h′).

Next we will describe loops with base point x0 ∈ X. The base point x0

is assumed to be contained in a belt disk of H0 and, as x0 ∈ X, also in a

belt disk of Hn for each n ≥ 0; indeed, w.l.o.g. we assume that x0 is the

midpoint of each of these belt disks.

For fixed n consider a loop fn in the pointed space (Hn, x0). The word

σn(fn) representing fn is defined over the alphabet

Dn := {B(h) |B(h) ∩X 6= ∅, h a 1-handle in Hn}

in the following way. The pre-images {f−1n (B) |B ∈ Dn} form a finite family

of disjoint compact subsets of the interval [0, 1]. Therefore this family is

separated, i.e., there is m ∈ N such that for all i ∈ {1, 2, . . . ,m} the set

f−1n (B)∩ [ i−1
m
, i
m
] is nonempty for at most one B = Bi. We list these letters

Bi as i increases and in the arising sequence we cancel out consecutive

repetitions of letters. Thus we obtain a finite word σn(fn) := B1B2 . . . Bk

over Dn which is independent of the chosen m and contains all belts the

loop fn traverses in the right ordering.

Indeed, since X ⊆ Hn for all n ∈ N, for a loop f ∈ (X, x0) the word

σn(f) is defined for all n ∈ N and represents f at approximation level n.

We define the following relation ∼n on Dn. We say that B1, B2 ∈ Dn are

in relation to each other, i.e., B1 ∼n B2 if and only if B1 6= B2 and there is

a 0-handle h in Hn such that B1, B2 ⊆ St(h). We call a word B1 . . . Bk over

Dn admissible if and only if
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(1) B1 = Bk and x0 ∈ B1,

(2) Bi ∼n Bi+1 (1 ≤ i ≤ k − 1).

For each loop f based at x0 the word σn(f) is obviously admissible .

We now associate with each admissible word ωn = B1 . . . Bk over Dn a

canonical loop L(ωn) in (Hn, x0). It is defined as follows. Since Bi ∼ Bi+1

and 〈Vn, En〉 has no cycles of order 2 there is a unique 0-handle attached to

the 1-handles corresponding to Bi and Bi+1. Let mi be the midpoint of this

0-handle. Connect x0 with m0 and then mi with mi+1 (i ∈ {0, . . . , k − 1})

and finally mk−1 with x0 by arcs contained in the graph 〈Vn, En〉. The

parametrization of this loop L(ωn) will mostly be irrelevant. In places where

it becomes important (e.g. in the proof of Proposition 3.1) this will be made

explicit. Obviously, σn(L(ωn)) = ωn.

If ωn = B1 . . . Bk satisfies only condition (2) a canonical path L(ωn) is

associated with ωn in the same way. To keep the notation simple, the loop

(or path, respectively) L(ωn) will also be denoted by ωn.

Proposition 2.1. Let f : [0, 1] → Hn be a loop based in x0. Then f and

the canonical loop σn(f) are homotopic in Hn.

Proof. First note that f is homotopic to rn ◦ f , where rn is the defor-

mation retraction of Hn onto 〈Vn, En〉. Let σn(f) = B1 . . . Bk. For every

i ∈ {1, . . . , k} there is a maximal interval [si, ti] such that rn ◦ f(si) =

rn ◦ f(ti) = rn(Bi), rn
(
f([si, ti]) ∩

⋃
B∈Dn

B
)
= {rn(Bi)} and 0 = s1 ≤ t1 <

s2 ≤ t2 < . . . < sk ≤ tk = 1. This means that the path rn ◦ f([si, ti]) is

contained in St(h1)∪Bi∪St(h2) where h1 and h2 are the two 0-handles with

St(h1) ∩ St(h2) = Bi. By our assumptions on the graph 〈Vn, En〉 associated

with Hn the set St(h1) ∪ Bi ∪ St(h2) is simply connected and, hence, the

restriction rn ◦ f ↿ [si, ti] is homotopic to the constant path in rn(Bi).

Moreover, the conditions on si and ti imply that rn ◦ f([ti, si+1]) is a

subset of rn(St) where St is the star of Hn whose closure contains Bi and

Bi+1 and, hence, rn ◦f ↿ [ti, si+1] is homotopic to the canonical path between

rn(Bi) and rn(Bi+1).

Putting the pieces together we obtain the assertion. �

The set of all admissible words over Dn is called Sn. If we endow Sn with

the operation “·” defined by concatenation of words where the first letter

of the second word is omitted, we obtain a semigroup (Sn, ·).

For each n ≥ 1 define a mapping γn : Sn → Sn−1 where for ωn =

B1 . . . Bk ∈ Sn the image γn(ωn) is defined as follows. Among the let-

ters of ωn we omit those which have no predecessor and replace each of
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the others by its predecessor. Finally, we cancel consecutive repetitions

of letters. Obviously, the resulting word is admissible and therefore be-

longs to Sn−1. With these mappings γn (n ≥ 1) which are easily seen to

be compatible with concatenation we get a projective limit of semigroups

lim
←−

Sn := {(ωn)n≥0 | γk(ωk) = ωk−1 for all k ≥ 1}. For n > k the mapping

γnk : Sn → Sk denotes the composition γk+1 ◦ . . . ◦ γn.

Let S(X, x0) be the set of all loops in X based in x0. The set S(X, x0)

is a groupoid with respect to the concatenation of loops. Consider a loop

f ∈ S(X, x0). Then, obviously, γn(σn(f)) = σn−1(f). Thus each sequence

(σn(f))n≥0 is contained in the projective limit lim
←−

Sn and we may define the

map

σ :

{
S(X, x0) → lim

←−
Sn

f 7→ (σn(f))n≥0

which is a groupoid homomorphism.

Our next aim is to describe how the homotopy of two loops f and g is

reflected in their word representations σn(f) and σn(g). To this matter we

define the following equivalence relation ≡n on Sn.

h

B 3

B 1

B 2

h

B 2

B 1

Figure 3. The left path demonstrates the elementary move
B1B2B3 ←→ B1B3. The path on the right hand side illus-
trates B1B2B1 ←→ B1.

An elementary move on subwords of words in Sn consists of substitutions

of the form

B1B2B3 ←→ B1B3 (if B1 6= B3) or B1B2B1 ←→ B1

where B1, B2 and B3 are all contained in the closure of a star St(h) for a

0-handle h ∈ Hn (see Figure 3). We say that two words ωn and ω′n in Sn are

equivalent, ωn ≡n ω
′
n for short, if ω′n can be obtained from ωn by finitely

many elementary moves.
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We call a word reduced if it does not contain three consecutive letters of

the form B1B2B3 where B1, B2 and B3 are all contained in the closure of a

star St(h) for a 0-handle h ∈ Hn. Let Gn be the set of reduced words in Sn.

Proposition 2.2. (1) Every ≡n equivalence class of Sn contains a unique

reduced word. Thus the mapping Redn : Sn → Gn which assigns to

each ωn the reduced word in its ≡n class is well defined.

(2) The operation

∗ :

{
Gn ×Gn → Gn

(ωn, ω
′
n) 7→ Redn(ωn · ω

′
n)

is a group operation on Gn.

(3) The group (Gn, ∗) is isomorphic to the fundamental group π(Hn, x0)

with the isomorphism ϕn : [f ]n 7→ Redn(σn(f)) where f : [0, 1]→ Hn

is a loop based at x0 and [f ]n is the homotopy class of f in Hn.

(4) The reduction map Redn : Sn → Gn is a semigroup epimorphism,

i.e., (Gn, ∗) is isomorphic to (Sn/ ker(Redn), ·).

Proof. Note that π(Hn, x0) ∼= π(〈Vn, En〉, x0) since 〈Vn, En〉 is a deformation

retract of Hn. Furthermore, π(〈Vn, En〉, x0) is isomorphic to a free group F

generated by the edges not contained in a fixed spanning tree of 〈Vn, En〉

(see [18, Corollary 7.35]). To each product g1 . . . gk of generators of F we

can associate a unique word by connecting the edges gi with intermediate

unique paths in the spanning tree. Obviously, the obtained word is reduced.

On the other hand, reversing this process two different reduced words give

rise to two different products of generators of F and therefore correspond

to two non-homotopic paths. Thus we obtain a bijective correspondence

between reduced words and homotopy classes of (Hn, x0).

To prove (1) we start with an arbitrary word in Sn and apply elemen-

tary moves until we arrive at a reduced word. This shows that any ≡n class

contains at least one reduced word. However, if two different reduced words

would be ≡n equivalent they could be transformed into each other by ele-

mentary moves. Thus the loops corresponding to the reduced words would

be homotopic in contrast to the above mentioned bijection between reduced

words and homotopy classes.

The above arguments imply that the operation ∗ is compatible with the

group operation in π(Hn, x0) which proves (2) and (3). Note that ϕn is well

defined due to Proposition 2.1. Assertion (4) follows immediately from the

definition of ∗.

For a related proof see [1, Proposition 2.3]. �
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Now we are going to define a projective limit on the groups (Gn, ∗),

n ∈ N, and relate it to the semigroup limit lim
←−

Sn.

Proposition 2.3. (1) For n ≥ 1 the map

δn :

{
Gn → Gn−1

ωn 7→ Redn−1(γn(ωn))

is a group homomorphism.

(2) Setting

lim
←−

Gn := {(ωn)n≥0 | δk(ωk) = ωk−1 for all k ≥ 1}

we obtain that

Red :

{
lim
←−

Sn → lim
←−

Gn

(ωn)n≥0 7→ (Redn(ωn))n≥0

is a well defined semigroup homomorphism.

Proof. Ad (1). Let ωn, ω
′
n ∈ Gn. Direct calculation yields

δn(ωn ∗ ω
′
n) = Redn−1(γn(Redn(ωn · ω

′
n)))

and

δn(ωn) ∗ δn(ω
′
n) = Redn−1(γn(ωn · ω

′
n)).

Since for each αn ∈ Sn we have that αn and γn(αn) are homotopic in Hn−1,

and αn and Redn(αn) are homotopic in Hn we get that γn(Redn(ωn · ω
′
n))

and γn(ωn · ω
′
n) are homotopic in Hn−1. Thus Proposition 2.2 (1) implies

that δn is a homomorphism.

(2) is an immediate consequence of the commutativity of the diagram

(2.1)
Sn

γn
−→ Sn−1

↓ Redn Redn−1 ↓

Gn
δn−→ Gn−1

which follows in a straightforward manner. �

Remark 2.4. Note that contrary to the setting of the Sierpiński gasket in

[1] Gn−1 can contain loops that are no longer present in Gn. Thus, in our

general setting, the mappings δn need not be surjective.

We now consider the Čech homotopy group π̌(X, x0). For a definition we

refer to Mardešić and Segal [17].2

Proposition 2.5. The Čech homotopy group π̌(X, x0) is isomorphic to

lim
←−

Gn.

2Note that in [17] the Čech homotopy group is called shape group.
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Proof. A proof of this proposition is in essence already contained in [3]. For

the sake of completeness we briefly repeat the key arguments.

For a subset A of a metric space let (A)ε denote the ε-neighborhood of

A. Now we consider

Un := {(St(h))εn | h is a 0-handle of Hn}

where εn with limn εn = 0 is chosen in a way that

St(h1) ∩ St(h2) 6= ∅ ⇐⇒ (St(h1))εn ∩ (St(h2))εn 6= ∅

for all 0-handles h1, h2 of Hn. The family (Un)n≥0 is cofinal in the set of

all finite open coverings of X since each 1-handle of Hn has nonempty

intersection with X. From this construction we conclude that the nerve3 of

Un is a deformation retract of Hn and thus by Proposition 2.2 (3) the group

Gn is the fundamental group of this nerve. This implies the result. �

Remark 2.6. Note that the projective limit of fundamental groups of han-

dle bodies occurring in the proof of [3, Theorem 5.11] is strongly related to

our construction. Indeed, this projective limit contains the Čech homotopy

group of (X, x0) as a subgroup. The converse inclusion may fail in the setting

of [3] since there it is not assumed that each 1-handle of Hn has nonempty

intersection with X. A special case of this construction is already contained

in [8, Section 3].

From Proposition 2.5 we get the following result.

Proposition 2.7. The mapping

ϕ :

{
π(X, x0) → lim

←−
Gn

[f ] 7→ Red(σ(f))

is a group monomorphism.

Proof. This follows by combining Proposition 2.5 and the fact that the fun-

damental group of a one-dimensional continuum can be embedded in its

Čech homotopy group in a canonical way (cf. [12, Theorem 1.1] and [3,

Theorem 5.11]). �

Summing up we arrive at the following theorem.

Theorem 2.8. The fundamental group π(X, x0) of a metrizable one-dimen-

sional continuum (X, x0) is isomorphic to a subgroup of the Čech homotopy

3For the definition of nerve see Hatcher [15], p. 257.
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group π̌(X, x0) ∼= lim
←−

Gn. Moreover, the following diagram commutes:

S(X, x0)
σ
→ lim

←−
Sn

↓ [ . ] Red ↓

π(X, x0)
ϕ
→֒ lim

←−
Gn

Our aim is now to describe the range of ϕ which provides a description

of π(X, x0) as a subgroup of the projective limit lim
←−

Gn of free groups.

3. Word description of the fundamental group

We associate with a fixed element (ωn)n≥0 = (Bn1Bn2 . . . Bnkn)n≥0 in

lim
←−

Sn a graph G = 〈V , E〉 with vertices V and directed edges E . We think

of the graph G as organized in rows of horizontally ordered vertices: in

the nth row, n ≥ 0, we have for every letter appearing in the word ωn a

corresponding vertex, i.e., V = {(n, j) | n ≥ 0, 1 ≤ j ≤ kn}. Edges connect

certain vertices from row n to vertices in row n + 1, namely, ((n, i), (n +

1, j)) ∈ E if and only ifBni is a predecessor ofBn+1,j and in the course of γn+1

that maps ωn+1 to ωn the belt disk Bn+1,j is mapped to Bni. Consequently

any vertex (n, i) in row n has at least one successor in row n + 1, and the

vertex (n, i) has a predecessor in row n−1 if and only if the letter Bni ∈ Dn

has a predecessor in Dn−1.

The graph G is used in the proof of the following proposition.

Proposition 3.1. For every (ωn)n≥0 ∈ lim
←−

Sn there exists a loop f ∈

S(X, x0) such that Red(σ(f)) = Red((ωn)n≥0), i.e., ran(Red◦σ) = ran(Red).

Proof. Let (ωn)n≥0 = (Bn1Bn2 . . . Bnkn)n≥0 be a fixed element of lim
←−

Sn. We

will inductively define a sequence of functions fn : [0, 1]→ Hn, n ≥ 0, such

that fn parametrizes the canonical loop associated with ωn.

We start with n = 0, ω0 = B01B02 . . . B0k0 , and divide [0, 1] into 2k0 − 1

subintervals of equal length by the points

0 = u01 < v01 < u02 < v02 < . . . < u0k0 < v0k0 = 1.

Define f0(t) to be constant and equal to the midpoint of the belt disk B0i

for t ∈ [u0i, v0i], 1 ≤ i ≤ k0, and f0 to parametrize the canonical path of the

word B0iB0,i+1 for t ∈ [v0i, u0,i+1], 1 ≤ i < k0. Obviously σ0(f0) = ω0.

Suppose fn is already defined in a way that fn(t) is equal to the midpoint

of Bni for t ∈ [uni, vni], 1 ≤ i ≤ kn, fn is the canonical path of the word

BniBn,i+1 for t ∈ [vni, un,i+1], 1 ≤ i < kn, and thus σk(fn) = γnk(σn(fn)) =

γnk(ωn) = ωk for all k ≤ n. We now explain in detail how to define fn+1(t)
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for t ∈ [un1, vn1] and t ∈ [vn1, un2]. In the equality γn+1(ωn+1) = ωn we

analyze the action of γn+1 on the individual letters of ωn+1: Figure 4 shows

Bn1 Bn2 . . .

ւ ց ւ ց . . .

Bn+1,1 . . . Bn+1,i1 Bn+1,i1+1 . . . Bn+1,i2 Bn+1,i2+1 . . . Bn+1,i3 . . .

Figure 4

a part of the graph G we have associated with (ωn)n≥0 in the beginning of

this section and has the following interpretation: Bn+1,1 and Bn+1,i1 is the

first and last letter in ωn+1 that is mapped to the first letter Bn1 of ωn by

γn+1, respectively; Bn+1,i1+1 up to Bn+1,i2 have no predecessor in Dn and

disappear by applying γn+1.

Now we define fn+1(t) for t ∈ [un1, vn1] analogously to f0 in [0, 1]: divide

[un1, vn1] into 2i1 − 1 subintervals of equal length and define fn+1 in these

subintervals alternately to be constant and equal to the midpoint of Bn+1,i

for 1 ≤ i ≤ i1, and to be the canonical path of the word Bn+1,iBn+1,i+1 for

1 ≤ i ≤ i1 − 1.

Next, the interval [vn1, un2] is divided into 2(i2−i1)+1 subintervals. Here

fn+1 alternately is equal to the canonical path of the word Bn+1,iBn+1,i+1

for i1 ≤ i ≤ i2, and is constant and equal to the midpoint of Bn+1,i for

i1 + 1 ≤ i ≤ i2.

In the same manner we proceed with the remaining intervals and obtain

a loop fn+1 satisfying our requirements.

We compare fn with fn+1. For 1 ≤ i ≤ kn:

t ∈ [uni, vni] :





fn(t) . . . constant and equal to the midpoint of Bni

fn+1(t) . . . stays in the union of Bni and the two stars
of Hn containing Bni in their closure,

and for 1 ≤ i ≤ kn − 1:

t ∈ [vni, un,i+1] :





fn(t) . . . equal to the canonical path
of the word BniBn,i+1

fn+1(t) . . . stays in the star of Hn containing
Bni and Bn,i+1 in its closure.

Summing up we obtain ‖fn−fn+1‖∞ ≤
3
n
where ‖·‖∞ denotes the maximum

norm for t ∈ [0, 1]. Consequently fn converges for n → ∞ uniformly to a

continuous f : [0, 1]→ X.

By construction we have fm(uni) ∈ Bni, 1 ≤ i ≤ kn, for all m ≥ n

and thus also f(uni) ∈ Bni, 1 ≤ i ≤ kn. This means that σn(f) contains

at least all letters appearing in the word ωn in the proper order, but it
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may happen that σn(f) contains further letters from Dn between the Bni

and some of the Bni appear more than once. To illustrate this we con-

sider the interval [uni, un,i+1] (see also Figure 5): let St1 and St2 be the

St1

St2

fHuniL fHvniL

fHun,i+1L

Bni

Bn,i+1

Figure 5.

two stars containing Bni in their closures. fn+1 and all fm with m ≥ n + 1

stay for t ∈ (uni, un,i+1) in the interior of the (simply connected) union

of the closures of two stars int(St1 ∪ St2) of Hn (interior as a subset of

Hn). This implies that f = lim
m→∞

fm stays in the union of the closed stars

St1 ∪ St2. Hence, σn(f ↿ [uni, un,i+1]) = BniQj1Qj2 . . . QjlBn,i+1, l ≥ 0, where

the Qjk are contained in the set of belts {Q1, . . . , QL} associated with the

stars St1 and St2. However, since f([uni, un,i+1]) ⊆ St1 ∪ St2, all the pos-

sibly occurring letters Qj1 . . . Qjl cancel out in the reduction process and

we obtain Redn(σn(f ↿ [uni, un,i+1])) = BniBn,i+1 and, hence, altogether

Redn(σn(f)) = Redn(ωn). �

Theorem 2.8 implies that π(X, x0) can be considered as a subgroup of

lim
←−

Gn. Now we characterize the elements of this subgroup and thus describe

π(X, x0).

Theorem 3.2. An element (ωn)n≥0 of lim
←−

Gn is in ran(ϕ) = ϕ(π(X, x0))

and therefore represents an element of π(X, x0) if and only if for all k ≥ 0

the sequence (γnk(ωn))n≥k is eventually constant.

In what follows nk is an index for which γnk(ωn) = γnkk(ωnk
) for all

n ≥ nk.

Remark 3.3. Since the Freudenthal compactification of a locally finite con-

nected graph is a metrizable one-dimensional continuum this result contains

the main result of [10] (see [10, Theorem 15]) as a special case.
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Recall that γnk is the composition γk+1 ◦ γk+2 ◦ . . . ◦ γn : Sn → Sk.

Analogously we define δnk to be the composition of the corresponding δi’s.

The proof of Theorem 3.2 runs along the same lines as in the case of the

Sierpiński gasket [1, Section 3.2]. However, in order to make the presentation

self contained we recall some of the details.

Let P1P2 . . . Pm, Q1Q2 . . . Qk be two words over some alphabet. We write

P1P2 . . . Pm � Q1Q2 . . . Qk if and only if there exists α : {1, . . . ,m} →

{1, . . . , k}, α injective and order preserving, such that Pi = Qα(i) for all

i ∈ {1, . . . ,m}.

Lemma 3.4. Let ωn, ω
′
n ∈ Sn. Then

(1) Redn(ωn) � ωn,

(2) ωn � ω′n implies γnk(ωn) � γnk(ω
′
n) for all k ≤ n,

(3) if (ωk)k≥0 ∈ lim
←−

Gn then γnk(ωn) � γn+1,k(ωn+1) for all k ≤ n.

Proof. The assertions (1) and (2) follow from the definitions of Redn and

γnk by direct calculation; (3) is a consequence of (1) and (2). �

We want to point out that by means of Proposition 3.1 the remaining

part of the proof of Theorem 3.2 can be performed purely in terms of words

in Gn and Sn and does not have to deal with loops in (X, x0). It consists

merely in collecting the facts that we have proved up to now.

Proof of Theorem 3.2. We start with proving the sufficiency of the given

condition. Put ω̄k = γnk(ωn) which is well defined for n ≥ nk, k ≥ 0, where

nk is defined after Theorem 3.2. We show that

(i) (ω̄k)k≥0 ∈ lim
←−

Sn and

(ii) Red(ω̄k)k≥0 = (ωn)n≥0.

For k ≥ 1 and n ≥ max{nk, nk−1} we obtain γk(ω̄k) = γk(γnk(ωn)) =

γn,k−1(ωn) = ω̄k−1. This shows (i).

Next we prove for ωn ∈ Gn that δnk(ωn) = Redk ◦ γnk(ωn): by (2.1) we

get δi ◦Redi = Redi−1 ◦ γi for all i ≥ 1. Iterated application of this identity

leads immediately to the claimed relation. Using this property, for k ≥ 0

and n ≥ nk, we infer Redk(ω̄k) = Redk(γnk(ωn)) = δnk(ωn) = ωk, which

proves (ii).

Due to Proposition 3.1 we can find f ∈ S(X, x0) such that Red(σ(f)) =

Red(ω̄k)k≥0 = (ωn)n≥0 and thus, using Theorem 2.8, we get

(ωn)n≥0 = Red(σ(f)) = ϕ([f ]).

Now we prove the necessity of the condition. Suppose (ωn)n≥0 ∈ ran(ϕ).

Since by Theorem 2.8 ran(ϕ) = ran(Red ◦σ) there exists f ∈ S(X, x0) with
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Red(σ(f)) = (ωn)n≥0. Then for all k ≥ 0 and all n ≥ k we have

σk(f) = γnk(σn(f)) � γnk(Redn(σn(f))) = γnk(ωn)

where we used (1) and (2) of Lemma 3.4. By (3) of Lemma 3.4 we get

γnk(ωn) � γn+1,k(ωn+1) � . . . � σk(f),

hence, (γnk(ωn))n≥k is eventually constant.

This completes the proof. �

For a word ω let |ω| denote the number of letters of ω and we call |ω|

the length of ω.

In the following we want to point out that by Theorem 3.2 we do not

only represent an element [f ] ∈ π(X, x0) by the sequence Red(σ(f)) of

group words. Indeed, this theorem also yields a unique representative of [f ]

at the semigroup level which corresponds to a distinguished loop f ∗ ∈ [f ]

that is minimal in the sense that

|σk(f
∗)| = min{|σk(g)| : g ∈ [f ]}

for all k ∈ N. Intuitively this means that f ∗ hits a belt disk of level k only

if this is really necessary for a loop to belong to the homotopy class [f ]. In

the proof of Proposition 3.5 we will construct this loop f ∗. Moreover, we

will relate f ∗ explicitly to the stabilization condition in Theorem 3.2. For

this purpose we set

σk([f ]) := lim
n→∞

γnk(Redn(σn(f))).

This is well defined as this limit exists due to Theorem 3.2 and since

Redn(σn(f)) does not depend on the representative of the homotopy class

[f ].

The sequence (ωn)n≥0 := (γnkk(ωn))k≥0 with nk as defined after the

statement of Theorem 3.2 is called the stabilized sequence of (ωn)n≥0 ∈

ϕ(π(X, x0)). Let (ω̄n)n≥0, (ω̄
′
n)n≥0 be two stabilized sequences. The stabi-

lized product is defined by

(ω̄n)n≥0 ∗ (ω̄
′
n)n≥0 := (Redn(ω̄n · ω̄′n))n≥0.

Thus the product of two stabilized sequences is formed by concatenation

and reduction at every level followed by stabilization.

We collect some properties of f ∗ and σk.

Proposition 3.5. For an arbitrary loop f in (X, x0) we have:

(1) (σn([f ]))n≥0 is an element of lim
←−

Sn.
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(2) There exists f ∗ ∈ [f ] such that |σk(f
∗)| = min{|σk(g)| : g ∈ [f ]} for

all k ∈ N. Indeed, we even get that σk([f ]) � σk(f
∗) � σk(g) holds

for each g ∈ [f ].

(3) For any two loops f, g ∈ S(X, x0) we have

(σn([fg]))n≥0 = (σn([f ]))n≥0 ∗ (σn([g]))n≥0,

where the product on the right hand side is the stabilized product.

Remark 3.6. (a) Note that the inequality σk([f ]) � σk(f
∗) in Propo-

sition 3.5 (2) can be strict. This is due to the fact that σk([f ]) can

be incomplete in a sense discussed after the proof of the proposition.

(b) By Proposition 3.5 (3) the stabilized product can be interpreted as

the group operation “∗” on ϕ(π(X, x0)) in terms of the stabilized

sequences. This justifies that we use the same symbol “∗” for this

operation.

Proof. (1) is property (i) in the proof of Theorem 3.2. Now we prove (2).

To construct the loop f ∗ we proceed in the same way as in the proof of

Proposition 3.1. Let fk be the canonical loop corresponding to σk([f ]) with

parametrization on the intervals [uki, vki] as specified in the proof of Propo-

sition 3.1. Then fk converges uniformly to a loop f ∗ in (X, x0) and we obtain

σk(fk) � σk(f
∗). By construction of fk we have σk(fk) = σk([f ]) and so we

infer σk([f ]) � σk(f
∗). Finally, we have to prove that σk(f

∗) � σk(g) holds

for all g ∈ [f ]. For g ∈ [f ], i ≥ 0 and sufficiently large n we have

σk+i(g) = γn,k+i(σn(g)) � γn,k+i(Redn(σn(g))) = σk+i([f ]) = σk+i(fk+i).

Let σk([f ]) =: P1 . . . PL. For any additional letter Q that might occur be-

tween Pr and Pr+1 in σk(f
∗) there exists a sequence of letters Qi occurring

in σk+i(fk+i) between the level k + i successors Pir and Pi,r+1 of Pr and

Pr+1, respectively, such that the distance between Qi and Q tends to 0

for i → ∞ (here we used again that fk → f ∗ uniformly; recall that let-

ters are belts). Since σk+i(g) � σk+i(fk+i) the letter Qi also appears in

σk+i(g) between Pri and Pr+1,i. Therefore, g traverses all the belts Qi and

thus also the belt Q after passing Pr and before passing Pr+1 and we obtain

P1 . . . PrQPr+1 . . . PL � σk(g). In this way we can argue inductively to prove

that each letter occurring in σk(f
∗) also occurs in σk(g) in the respective

position. This yields σk(f
∗) � σk(g).

(3) is a direct consequence of the definition of the stabilized product.

One just has to use the fact that Redn(σn([f ])) = Redn(σn(f)) which is

item (ii) in the proof of Theorem 3.2. �
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An element (wn)n≥0 ∈ lim
←−

Sn is called complete if the corresponding

graph G defined at the beginning of the present section has the property

that any irrational cut in the horizontally ordered set of branches converges

to a point that is not contained in a belt disk. As in [1, Section 3] one

can prove that the complete elements in lim
←−

Sn are exactly the elements in

the range of σ, i.e., the complete elements can be represented in the form

(σk(g))k≥0 for some g ∈ S(X, x0).

Note that in general (σk(f))k≥0 is not complete and we only have

σk([f ]) � σk(f
∗). Indeed, (σk(f

∗))k≥0 is the completion of (σk([f ]))k≥0 in

the sense that it is the minimal (w.r.t. “�”) complete element of lim
←−

Sn

containing (σk([f ]))k≥0.

In the following example we consider a loop f where (σk([f ]))k≥0 is in-

complete. This situation occurs if there is a sequence of “holes” in the space

X that converges to a point of a given belt. This constellation cannot be

avoided for certain X. In particular, each handle body construction for a bad

set X (in the sense of [4]) gives rise to loops f with incomplete (σk([f ]))k≥0.

Example 3.7. Let X be the one-dimensional space depicted in Figure 6

and let x0 be the base point. Note that the “holes” in X accumulate at x2.

Moreover, we choose the handle body construction at each level k in a way

x3

x2

x1

x0

B HkL
2

B HkL
1

B HkL
3

X

Figure 6. An illustration of a situation that leads to an
incomplete sequence (σk([f ]))k≥0.

as indicated in Figure 6. In particular, the belt B2(k) contains the point

x2. We choose f to be the loop that traverses the triangle x1x2x3x1 once.

Now, as B1(k), B2(k), B3(k) lie in the same star, in the reduced description

Redk(σk(f)) the letter B2(k) does not occur for any k ∈ N. Thus B2(k)

is not contained in σk([f ]) for all k. On the other hand, B2(k) is obviously

contained in σk(f). This shows that σk(f) 6= σk([f ]) and, hence, (σk([f ]))k≥0

is not complete.
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The next example is devoted to the Sierpiński carpet.

Example 3.8. The well-known Sierpiński carpet M is depicted on the left

hand side of Figure 7. On the right hand side of this figure a handle body

construction for this set is visualized. This construction can be performed

in an analogous way at each approximation level and can be used to give

a description of the fundamental group of M in terms of words (for the

Sierpiński gasket such a description is detailed in [1]).

0-Handle 1-Handle

belt disk

Figure 7. The Sierpiński carpet (left) and its handle body
approximation H2 (right).

4. Cancelation

As before let X be a metrizable one-dimensional continuum and x0 ∈ X.

In this section we collect some properties of the multiplication of elements

of lim
←−

Gn and their corresponding stabilized sequences. The results split into

several lemmas, in the sequel we will mainly use Lemma 4.3.

Let PL . . . P1 and Q1 . . . QM be two elements of Gm. We consider the

possible reductions in the product (PL . . . P1) ∗ (Q1 . . . QM). By definition

P1 = Q1 is equal to the belt containing the base point x0. PL . . . P1 as well as

Q1 . . . QM are already reduced. Thus reduction is only possible at the point

where the two words are concatenated. The group multiplication “∗” on Gm

can naturally be extended to subwords w,w′ of group words provided that

the last letter of w lies in the same star as the first letter of w′. We will make

use of this extension throughout the remaining part of the paper. Also in

this setting the operation “∗” means concatenation followed by reduction.

We start with the following reduction algorithm for the group operation

“∗”. Note that with this extended notation for ∗ we may write

(PL . . . P1) ∗ (Q1 . . . QM) = (PL . . . P1) ∗ (Q2 . . . QM).

Now we have to deal with the following cases:
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(i) The word PL . . . P1Q2 . . . QM is already reduced.

(ii) P1, Q2, Q3 lie in the same star. This is impossible because, since

P1 = Q1, it would imply that Q1, Q2, Q3 is in the same star which

contradicts the fact that Q1 . . . QM is reduced.

(iii) P2, P1, Q2 lie in the same star. Then

(PL . . . P1) ∗ (Q2 . . . QM) = (PL . . . P2) ∗ (Q2 . . . QM)

(a) If P2 6= Q2 then P3, P2, Q2 and P2, Q2, Q3 are not in the same

star since, otherwise, P1, P2, P3 or Q1, Q2, Q3 would be in the

same star which is false. Hence, in this case

(PL . . . P1) ∗ (Q1 . . . QM) = PL . . . P2Q2 . . . QM .

(b) If P2 = Q2 then we have

(PL . . . P1) ∗ (Q1 . . . QM) = (PL . . . P2) ∗ (Q2 . . . QM)

and we may proceed iteratively in the same manner as before.

This algorithm shows that essential cancelation is only possible if a suffix

of the first word is a mirror image of a prefix of the second word, i.e., if

Q1 = P1, Q2 = P2, and so on.

We make this precise in the following lemma.

Lemma 4.1. Let PL . . . P1, Q1 . . . QM ∈ Gm then the operation ∗ is given

by the following procedure: Take ℓ maximal such that P1 . . . Pℓ = Q1 . . . Qℓ.

Then

(PL . . . P1)∗(Q1 . . . QM) =





PL . . . P2P1Q2 . . . QM , if ℓ = 1 and P2, Q1,
Q2 do not lie in the
same star,

PL . . . Pℓ+1Qℓ+1 . . . QM , if ℓ = 1 and P2, Q1,
Q2 lie in the same
star, or
2 ≤ ℓ < min{L,M},

PL . . . Pℓ, if ℓ =M,

Qℓ . . . QM , if ℓ = L.

The proof of this lemma follows immediately from the above considera-

tions.

Now we want to use the formula in Lemma 4.1 as a definition of an

operation which is also defined for semigroup words. Indeed, we define a

new operation ⊛ : Sm × Sm → Sm as in Lemma 4.1 with one exception: if

2 ≤ ℓ < min{L,M} it may happen for PL . . . P1, Q1 . . . QM ∈ Sm that Pℓ+1
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is not a neighbor of Qℓ+1, thus we define in this case

(PL . . . P1)⊛(Q1 . . . QM) =





PL . . . Pℓ+1PℓQℓ+1 . . . QM , if Pℓ+1 is not a
neighbor of Qℓ+1,

PL . . . Pℓ+1Qℓ+1 . . . QM , if Pℓ+1 a neighbor
of Qℓ+1.

Note that the operation ⊛ corresponds to concatenation followed by reduc-

tion on the interface. Moreover, ⊛ agrees with “∗” on Gn.

We now relate this operation to the stabilized product.

Lemma 4.2. Let (ω̄′n)n≥0, (ω̄
′′
n)n≥0 be two stabilized sequences and let

(ω̄n)n≥0 = (ω̄′n)n≥0 ∗ (ω̄
′′
n)n≥0

be their stabilized product. Then on each level k ∈ N we have

(4.1) ω̄k � ω̄′k ⊛ ω̄′′k .

In terms of the mapping σk and loops f, g ∈ S(X, x0) this reads as follows:

σk([fg]) � σk([f ])⊛ σk([g])

Proof. Let ω̄′k = PL . . . P1 and ω̄
′′
k = Q1 . . . QM , let n be a “stabilizing index”

satisfying γnk(Redn(ω̄n)) = ω̄k, γnk(Redn(ω̄
′
n)) = ω̄′k, γnk(Redn(ω̄

′′
n)) = ω̄′′k .

Moreover, let p = Redn(ω̄
′
n), q = Redn(ω̄

′′
n) be the reduced words of the

sequences at level n.

Therefore, to show (4.1) we have to prove that γnk(p∗q) � γnk(p)⊛γnk(q).

Let s be the maximal word with the property that p = rs and q = s̃t

(where s̃ is the reversed word of s). In the following we work out the case

1 < |s| < min{|p|, |q|}, the remaining cases can be checked easily.

According to Lemma 4.1 we have

(4.2) γnk(p ∗ q) = γnk(rt) = γnk(r) · γnk(t).

Moreover,

γnk(p)⊛ γnk(q) = γnk(r)γnk(s)⊛ γnk(s̃)γnk(t) = γnk(r)⊛ γnk(t).

For the last equality note that by (4.2) γnk(r)γnk(t) is an admissible word,

hence, in γnk(r)γnk(s)⊛ γnk(s̃)γnk(t) no letter from the part γnk(s) and its

reverse remain.

Summing up this means that our assertion is equivalent to γnk(r) ·

γnk(t) � γnk(r)⊛ γnk(t), which is obvious. �

We use Lemma 4.2 to prove the following inequality for the lengths of

stabilized products.
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Lemma 4.3. Let f, g be loops in (X, x0). Then we have

(4.3)
∣∣σk([fg])

∣∣ ≥
∣∣ |σk([f ])| − |σk([g])|

∣∣.

Proof. Due to Lemma 4.2 and the definition of ⊛ we have
∣∣σk([fg])

∣∣ ≥
∣∣ σk([f ])⊛ σk([g])

∣∣ ≥
∣∣ |σk([f ])| − |σk([g])|

∣∣.

�

5. Continuity of homomorphisms

As before let X be a metrizable one-dimensional continuum and x0 ∈ X.

In this section we provide a new proof of a result of Eda [11, Theorem 1.1]

which states that each homomorphism h from the fundamental group of

the Hawaiian Earring E to π(X, x0) is induced by a continuous map from

E to X. The methods we have developed in the previous sections enable us

to give an almost purely algebro-combinatorial proof of this result (though

topological intuitions are helpful to understand the idea). Before we go into

details we give an outline of our strategy.

We employ the following notation. Let o ∈ E be the point contained

in all loops of E and Cn the elements of π(E, o) associated with the n-th

largest loop of E, n ∈ N. First one has to understand better the structure

of a group homomorphism h : π(E, o) → F (in most cases F = π(X, x0) is

the fundamental group of the space X) defined on the fundamental group

π(E, o) of E.

Many auxiliary results (from Lemma 5.1 to Proposition 5.4) are devoted

to the observation that the (algebraic) property of h to be a homomorphism

has remarkable consequences which can be interpreted as continuity proper-

ties of h. An important role is played by a theorem of Higman (Lemma 5.1)

which states that h : π(E, o) → F does not depend on small circles if F

is free, i.e., all Cn with n sufficiently large and, even more, all admissi-

ble infinite compositions of such Cn’s have trivial image. As a consequence

(due to Eda, cf. Lemma 5.2) each homomorphism h : π(E, o)→ π(X, x0) is

uniquely determined by its values on the loops Cn. From this we derive as a

byproduct Theorem 5.3, expressing that h is compatible with the involved

inverse group limit. For the remaining parts Proposition 5.4 is crucial. It

asserts that for elements a ∈ π(E, o) which are small in the above sense the

image h(a) is also uniformly small in an appropriate sense, namely: there is

a finite upper bound for the number of letters in σm(h(a)) if a is restricted

to the condition Redn0(σn0(a)) = e for sufficiently large n0 = n0(m). A main

tool in the proof of Proposition 5.4 is Lemma 4.3.
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The continuity interpretation from the preceding paragraph suggests

that, for n → ∞, h(Cn) tends to the homotopy class of the constant loop

in a specific way. Loosely speaking, the imagined picture behind is that for

large n the minimal representative hn of the homotopy class h(Cn) can be

decomposed into a path t from x0 to some point x∗, followed by a small loop

yn based at x∗ and then the converse path t−1 of t, i.e., hn = tynt
−1, where

the path t does not depend on n. The technical effort to make this intuition

rigorous is notable and requires the considerations from Proposition 5.5 to

5.9. Proposition 5.5 essentially shows that, given any approximation level,

for large enough n the digital representation of yn at this level requires not

more than one letter, so, indeed, yn is small. Proposition 5.7 takes care of

the fact that for increasing n the possible variation in the combinatorial

fine structure is small and completely under control. Proposition 5.8 guar-

antees in a combinatorial way the existence of t and, as a consequence, of

x∗. Proposition 5.9 shows that for n→∞ the loops yn based at x∗ tend to

the constant loop.

With these auxiliary tools it is more or less straightforward to prove The-

orem 5.10. Given any homomorphism h : π(E, o) → π(X, x0) consider the

point x∗ and the loops yn according to the above construction. Appropriate

parametrizations of Cn and yn produce a continuous mapping ψ : E → X

which induces a homomorphism ψ∗ : π(E, o) → π(X, x∗). With this homo-

morphism we finally obtain h = χt ◦ ψ∗ where χt : π(X, x
∗) → π(X, x0),

[f ] 7→ [tft−1].

Now we start to pursue the program outlined so far. Let Wn be the set

of subwords of elements of Sn and define lim
←−

Wn with bonding maps defined

analogous to γnk. With no risk of confusion, these maps will again be called

γnk. Recall that |ω| denotes the number of letters of the word ω and ω̃ its

reversed word; Λ is the empty word. Moreover, in each group we denote the

neutral element by e.

In the following we will use a basic result of Higman [14, Theorem 1]

(see also Eda [11, Lemma 3.1]).

Lemma 5.1. Let F be an arbitrary free group and Fn be the (free) sub-

group of π(E, o) generated by the n largest loops C1, . . . , Cn of the Hawaiian

Earring. For each homomorphism h : π(E, o) → F there exist k0 ∈ N and

a homomorphism h̄ from Fk0 to F such that h = h̄ ◦ qk0 where qk0 is the

canonical epimorphism of π(E, o) onto Fk0.
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Next we mention the following result of Eda [11, Lemma 3.15]. It is an

immediate consequence of Lemma 5.1 and the fact that π(X, x0) →֒ π̌(X, x0)

(see [12]).

Lemma 5.2. Let (X, x0) be a metrizable one-dimensional continuum. If

two homomorphisms h and h′ from π(E, o) to π(X, x0) coincide on all Cn

then they are equal. Consequently, ran(h) is finitely generated if and only if

the kernel of h contains almost all Cn, n ∈ N.

Recall that any element in π(E, o) can be represented in the form (Cα(i))i∈I

where (I,≤) is a countable linearly ordered set and α : I → N satisfies that

α−1(n) is a finite subset of I for all n ∈ N (cf. [2]).

Before we state our next result which can be interpreted as an “infinite

homomorphism property” we have to define infinite products in lim
←−

Gn.

Let (I,≤) be a countable linearly ordered set and ((ωiℓ)ℓ≥0)i∈I be a family

(indexed by I) of elements in lim
←−

Gn with the property that for all ℓ ≥ 0

there exists a finite subset Iℓ of I such that for all i ∈ I \ Iℓ we have ωiℓ = e.

In this case we define

∗
i∈I

(ωiℓ)ℓ≥0 =

(
∗

i∈Iℓ
ωiℓ

)

ℓ≥0

.

Note that since ωi,ℓ−1 6= e implies ωiℓ 6= e we have

δℓ

(
∗

i∈Iℓ
ωiℓ

)
= ∗

i∈Iℓ
ωi,ℓ−1 = ∗

i∈Iℓ−1

ωi,ℓ−1,

hence, the product is an element of lim
←−

Gn.

If (ωiℓ)ℓ≥0 lies in ϕ(π(X, x0)) for all i ∈ I and also the product ∗
i∈I

(ωiℓ)ℓ≥0

is in ϕ(π(X, x0)) we can extend this notion of an infinite product also to

the corresponding elements in π(X, x0).

Theorem 5.3. Let (X, x0) be a metrizable one-dimensional continuum.

Then for each homomorphism h from π(E, o) to π(X, x0) and for each el-

ement (Cα(i))i∈I ∈ π(E, o) the product ∗
i∈I
h(Cα(i)) is a well-defined element

in π(X, x0) and we have

h((Cα(i))i∈I) = ∗
i∈I
h(Cα(i)).

Proof. We have to show that the product (vℓ)ℓ≥0 := ∗
i∈I
ϕ(h(Cα(i))) is well-

defined in lim
←−

Gn. For this purpose we set (ωnℓ)ℓ≥0 = ϕ(h(Cn)) for each

n ∈ N. For ℓ ∈ N let pℓ : lim
←−

Gn → Gℓ denote the canonical projection

in the projective limit and hℓ = pℓ ◦ ϕ ◦ h : π(E, o) → Gℓ. Lemma 5.1

applied to hℓ implies that there exists kℓ with the following property: For
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any countable linearly ordered set (J,≤) and β : J → N with |β−1(k)| <∞

we have

hℓ((Cβ(j))j∈J) = hℓ((Cβ(j))j∈Jℓ) = ∗
j∈Jℓ

hℓ(Cβ(j))

where Jℓ :=
⋃

k<kℓ

β−1(k). In particular, we get for all k ≥ kℓ that ωkℓ =

hℓ(Ck) = hℓ(e) = e, and thus

hℓ((Cα(i))i∈I) = hℓ((Cα(i))i∈Iℓ) = ∗
i∈Iℓ

hℓ(Cα(i)) = ∗
i∈Iℓ

ωα(i)ℓ

with Iℓ :=
⋃

k<kℓ

α−1(k). Now we obtain vℓ = pℓ( ∗
i∈I

(ωα(i)ℓ′)ℓ′≥0) = ∗
i∈Iℓ

ωα(i)ℓ =

hℓ((Cα(i))i∈I) which shows that (vℓ)ℓ≥0 as an (infinite) product is well defined

in lim
←−

Gn and moreover

∗
i∈I
ϕ(h(Cα(i))) = (vℓ)ℓ≥0 = (hℓ((Cα(i))i∈I))ℓ≥0 = ϕ(h(Cα(i))i∈I).

Transferring this equality back to π(X, x0) with ϕ
−1 we are done. �

Let m ∈ N be fixed. The following proposition shows that the number

of level m letters in words corresponding to h(a) ∈ π(X, x0) is uniformly

bounded provided that a ∈ π(E, o) contains only loops which are sufficiently

small.

Proposition 5.4 (cf. [11, Lemma 3.11]). Let h : π(E, o) → π(X, x0) be a

homomorphism. Then for all m ∈ N there exists n0 = n0(m) such that

sup{|σm(h(a))| : a ∈ π(E, o) with Redn0(σn0(a)) = e} <∞.

Proof. The proof is done by contradiction. Suppose there exists m ∈ N such

that for all n ∈ N

sup{|σm(h(a))| : a ∈ π(E, o) with Redn(σn(a)) = e} =∞.

Then we may choose a0, a1, . . . ∈ π(E, o) in a way that for each i ∈ N we

have

(i) Redi(σi(ai)) = e,

(ii) |σm(h(ai))| > |σm(h(ai−1))|.

Note that because of (i) and Theorem 3.2 for an arbitrary sequence 0 ≤

j0 < j1 < j2 < . . . the product aj0aj1aj2 . . . is an element of π(E, o).

Let i0 = 1, ℓ0 = 1 and for r ≥ 0 define ir+1 and ℓr+1 inductively in

the following way. Suppose i0, . . . , ir and ℓ0, . . . , ℓr are already chosen then

there exists ir+1 > ir such that

(iii) 2|σm(h(ai1 . . . air))| < |σm(h(air+1))| (by (ii)),

(iv) Redℓr(σℓr(h(air+1aj0aj1 . . .)) = e for all sequences (j0, j1, . . .) with

ir+1 < j0 < j1 < . . . (by Lemma 5.1).
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Now choose ℓr+1 > ℓr such that

(v) σm(h(ai0 . . . air+1)) = γℓr+1m(Redℓr+1(σℓr+1(h(ai0 . . . air+1)))).

Using (4.3) assertion (iii) implies that

(vi) |σm(h(ai0 . . . air))| < |σm(h(ai0 . . . air+1))|.

In the following we consider the element a := ai0ai1ai2 . . . ∈ π(E, o). Since

1 = ℓ0 < ℓ1 < . . . there exists r ≥ 1 such that

σm(h(a)) = γℓrm(Redℓr(σℓr(h(a)))) = γℓr+1m(Redℓr+1(σℓr+1(h(a)))).

With this choice of r we obtain

|σm(h(a))| = |γℓrm(Redℓr(σℓr(h(a))))|
= |γℓrm(Redℓr(σℓr(h(ai0 . . . air)))∗

Redℓr(σℓr(h(air+1air+2 . . .))))|
(iv)
= |γℓrm(Redℓr(σℓr(h(ai0 . . . air)))|
(v)
= |σm(h(ai0 . . . air))|
(vi)
< |σm(h(ai0 . . . air+1))|
(v)
= |γℓr+1m(Redℓr+1(σℓr+1(h(ai0 . . . air+1)))|
(iv)
= |γℓr+1m(Redℓr+1(σℓr+1(h(ai0 . . . air+1)))∗

Redℓr+1(σℓr+1(h(air+2air+3 . . .))))|
= |γℓr+1m(Redℓr+1(σℓr+1(h(a))))|
= |σm(h(a))|.

Since this is absurd we get the desired contradiction. �

In the next proposition we have to investigate the elements h(Cn) in

more detail.

Proposition 5.5. Fix m ∈ N, choose n0 = n0(m) as in Proposition 5.4 and

for n ≥ n0 write σm(h(Cn)) in the form σm(h(Cn)) = pnqnp̃n with pn :=

Pn1 . . . PnJn, Jn ≥ 0, and qn := Qn0Qn1 . . . QnKn
Qn0 such that Kn ≥ −1 is

as small as possible. Furthermore, let ωn = (ωnℓ)ℓ≥0 = ϕ(h(Cn)), and for

all ℓ with γℓm(ωnℓ) = pnqnp̃n let qnℓ be the largest subword of ωnℓ which is

projected to (the central part) qn by γℓm, i.e., satisfies γℓm(qnℓ) = qn.

Then there exists ℓ0 = ℓ0(n,m) such that for all ℓ ≥ ℓ0 the word ωnℓ can

be written as

(5.1) ωnℓ = pnℓqnℓp̃nℓ.

Moreover, qn = Qn0, i.e., the canonical path associated with qnℓ is contained

in the union of two stars of level m linked by Qn0.

Remark 5.6. Concerning the notation in Proposition 5.5 note that

(1) the word pn may be empty whereas qn always contains at least one

letter,
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(2) Kn = −1 means that qn = Qn0, and, due to the definition of qn, the

cases Kn = 0 (qn is not admissible) and Kn = 1 (the minimality condition

on Kn is violated) cannot occur.

Proof. The assertions are trivially true for h(Cn) = e. Thus we may assume

that h(Cn) 6= e. Recall that n0 is chosen as in Proposition 5.4 depending

on the fixed level m and let ℓ0 satisfy γℓ0m(ωnℓ0) = σm(h(Cn)). By the

definition of qnℓ the word ωnℓ has a well defined representation of the form

ωnℓ = pnℓqnℓp
′
nℓ such that γℓm(pnℓ) = γnℓ(p

′
nℓ) = Pn1 . . . PnJn . We prove the

proposition by showing the following two assertions for all ℓ ≥ ℓ0:

(i) p′nℓ = p̃nℓ,

(ii) Kn = −1.

Ad (i). Assume p′nℓ 6= p̃nℓ for some ℓ ≥ ℓ0. (Note that this implies that at

least one of the words pnℓ, p
′
nℓ is nonempty and thus Jn ≥ 1.) Then we have

σm(h(C
2
n)) = γℓm(pnℓqnℓp

′
nℓ ∗ pnℓqnℓp

′
nℓ)

� Pn1 . . . (PnJnQn0 . . . QnKn
Qn0)(PnJnQn0 . . . QnKn

Qn0)PnJn . . . Pn1,

where the inequality is due to the assumption p′nℓ 6= p̃nℓ which implies that

from the part p′nℓ ∗ pnℓ at least two successors of the letter PnJn in level

ℓ remain and possible further cancellations with qnℓ on the left or on the

right (which can occur if p′nℓ is a suffix of p̃nℓ, or vice versa) stop as soon as

successors of Qn0 in qnℓ appear.

Iterating this procedure we get

σm(h(C
j
n)) = γℓm(ω

j
nℓ)

� Pn1 . . . Pn,Jn−1(PnJnQn0Qn1 . . . QnKn
Qn0)

jPnJn . . . Pn1.

Since the length of the right hand side is not bounded in j this contradicts

Proposition 5.4. Thus p′nℓ = p̃nℓ and (i) is shown for ℓ ≥ ℓ0.

Ad (ii). By (i) and Lemma 4.2 we have

σm(h(C
2
n)) = γℓm(pnℓqnℓp̃nℓ ∗ pnℓqnℓp̃nℓ) =

� (Pn1 . . . PnJnQn0 . . . QnKn
Qn0PnJn . . . Pn1)⊛

(Pn1 . . . PnJnQn0 . . . QnKn
Qn0PnJn . . . Pn1).

Suppose Kn ≥ 2. Note that by the minimality of Kn we have QnKn
6= Qn1.

There occur two (slightly) different cases: QnKn
can be a neighbor of Qn1 or

not. We work out in detail the first case, the latter can be treated similarly4.

4The only difference is that in the latter case subsequently between QnKn
and Qn1

the letter Qn0 has to be added.
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In any of the two cases we have QnKn
Qn0 6= Q̃n0Qn1. Therefore, if QnKn

is

a neighbor of Qn1 we obtain

σm(h(C
2
n)) � Pn1 . . . PnJnQn0 . . . QnKn

Qn1 . . . QnKn
Qn0PnJn . . . Pn1.

Iteration yields

σm(h(C
j
n)) = γℓm(ω

j
nℓ) � Pn1 . . . PnJnQn0(Qn1 . . . QnKn

)jQn0PnJn . . . Pn1.

This contradicts Proposition 5.4, and thus Kn = −1 which yields (ii). �

In the following proposition we will compare the tails pnℓ of ωnℓ when ℓ

is fixed and n varies.

Proposition 5.7. Notation as in Proposition 5.5. Moreover, we write qnℓ

in the form qnℓ = rnℓsnℓr̃nℓ with rnℓ maximal. For all n, n′ ≥ n0 = n0(m)

and for all ℓ ≥ max{ℓ0(n,m), ℓ0(n
′,m)} with ωnℓ, ωn′ℓ 6= e we have:

(1) pn′ℓ is a prefix of pnℓ or vice versa, and, moreover, | |γℓm(pnℓ)| −

|γℓm(pn′ℓ)| | ≤ 1.

(2) If pn′ℓ is a prefix of pnℓ and |γℓm(pnℓ)|−|γℓm(pn′ℓ)| = 1, i.e., γℓm(pnℓ) =

Pn1 . . . PnJn and γℓm(pn′ℓ) = Pn1 . . . Pn,Jn−1 then

(a) γℓm(ωn′ℓ) = Pn1 . . . Pn,Jn−1PnJnPn,Jn−1 . . . Pn1, i.e., Qn′0 = PnJn,

(b) pnℓ is a prefix of pn′ℓrn′ℓ and in p̃nℓ ∗ (pn′ℓrn′ℓsn′ℓ) only the first

letter is a successor of a letter from Dm.

(3) If pn′ℓ is a prefix of pnℓ and |γℓm(pnℓ)| = |γℓm(pn′ℓ)|, i.e., γℓm(pnℓ) =

γℓm(pn′ℓ) = Pn1 . . . PnJn then Qn0 = Qn′0 and pnℓ = pn′ℓ.

Proof. Ad (1). We first deal with the case that pn′ℓ is the empty word Λ,

i.e., Jn′ = 0. Then we have σm(h(Cn′)) = Qn′0 and ωn′ℓ = qn′ℓ = rn′ℓsn′ℓr̃n′ℓ.

Since ωn′ℓ 6= e we know that sn′ℓ contains at least 3 letters.

Now assume Jn = |γℓm(pnℓ)| ≥ 2 and consider the element

(ωnℓ ∗ ωn′ℓ)
2 = (pnℓqnℓp̃nℓ) ∗ (rn′ℓsn′ℓr̃n′ℓ) ∗ (pnℓqnℓp̃nℓ) ∗ (rn′ℓsn′ℓr̃n′ℓ).

In particular, we study cancellation in the part p̃nℓ ∗ (rn′ℓsn′ℓr̃n′ℓ) ∗ pnℓ: This

amounts to a conjugation of the nontrivial loop rn′ℓsn′ℓr̃n′ℓ and due to the

fact that rn′ℓsn′ℓr̃n′ℓ contains only successors of a single letter from Dm

the reduction process stops at the latest at the last occurrence of a level ℓ

successor of Pn2 in p̃nℓ and at the first occurrence of the same successor of

Pn2 in pnℓ, respectively, and in between there remain at least three letters

which all lie in the two m-stars attached to Qn′0. So when we apply γℓm we
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obtain

γℓm(( pnℓ︸︷︷︸
↓

PnJn

qnℓ︸︷︷︸
↓

Qn0

p̃nℓ) ∗ (rn′ℓsn′ℓr̃n′ℓ) ∗ (pnℓ︸ ︷︷ ︸
↓

PnJn

qnℓ︸︷︷︸
↓

Qn0

p̃nℓ) ∗ (rn′ℓsn′ℓr̃n′ℓ)︸ ︷︷ ︸
↓

PnJn

) �

� PnJn(Qn0PnJn)
2.

By iteration we get |σm(h((CnCn′)i))| ≥ 2i + 1 which contradicts Proposi-

tion 5.4, hence Jn ≤ 1 and (1) is proved in the special case pn′ℓ = Λ.

Next we deal with the case pnℓ, pn′ℓ 6= Λ, i.e., Jn, Jn′ ≥ 1, and we assume

that neither pn′ℓ is a prefix of pnℓ nor vice versa. We consider ωnℓ ∗ ωn′ℓ =

(pnℓrnℓsnℓr̃nℓp̃nℓ) ∗ (pn′ℓrn′ℓsn′ℓr̃n′ℓp̃n′ℓ). Due to our assumption at the inner

part p̃nℓ ∗ pn′ℓ we get p̃nℓ ∗ pn′ℓ = P
(ℓ)
nJn

sP
(ℓ)
n′Jn′

where P
(ℓ)
nJn

and P
(ℓ)
n′Jn′

are level

ℓ successors of PnJn and Pn′Jn′ , respectively, and s is a word which can be

empty if P
(ℓ)
nJn
6= P

(ℓ)
n′Jn′

. Obeying Lemma 4.1 the cancellation stops here,

and r̃nℓ on the left and rnℓ on the right remain unchanged. Applying γℓm we

obtain

γℓm(ωnℓ ∗ ωn′ℓ) = γℓm( pnℓ︸︷︷︸
↓

PnJn

rnℓsnℓr̃nℓ︸ ︷︷ ︸
↓

Qn0

P
(ℓ)
nJn

sP
(ℓ)
n′Jn′︸ ︷︷ ︸

↓

PnJn ...Pn′J
n′

rn′ℓsn′ℓr̃n′ℓ︸ ︷︷ ︸
↓

Qn′0

pn′ℓ︸︷︷︸
↓

Pn′J
n′

) �

� PnJnQn0PnJn . . . Pn′Jn′Qn′0Pn′Jn′ .

Iterating this we end up with |σm(h((CnCn′)i))| ≥ 4i, a contradiction to

Proposition 5.4.

So now we may suppose that pnℓ, pn′ℓ 6= Λ and w.l.o.g. pn′ℓ is a prefix of

pnℓ. Assume |γℓm(pnℓ)| − |γℓm(pn′ℓ)| = j ≥ 2. Then p̃nℓ ∗ pn′ℓ = t̃nℓ where tnℓ

is a suffix of pnℓ beginning with a level ℓ successor of Pn,Jn−j, and further

containing successors of Pn,Jn−k, 0 ≤ k ≤ j − 1. Using this we get

(ωnℓ ∗ ωn′ℓ)
2 = ((pnℓqnℓp̃nℓ) ∗ (pn′ℓrn′ℓsn′ℓr̃n′ℓp̃n′ℓ))

2 =

(pnℓqnℓt̃nℓ) ∗ (rn′ℓsn′ℓr̃n′ℓ) ∗ (tnℓqnℓt̃nℓ) ∗ (rn′ℓsn′ℓr̃n′ℓp̃n′ℓ)

and we can proceed in the same way as in the first part of this proof (case

pn′ℓ = Λ) to show that |σm(h((CnCn′)i))| is not bounded for i → ∞, a

contradiction. Thus |γℓm(pnℓ)| − |γℓm(pn′ℓ)| ≤ 1 and (1) is proved.

Ad (2)(a). Let as before p̃nℓ ∗ pn′ℓ = t̃nℓ and assume Qn′0 6= PnJn . Now

we have

ωnℓ ∗ ωn′ℓ = (pnℓqnℓp̃nℓ) ∗ (pn′ℓrn′ℓsn′ℓr̃n′ℓp̃n′ℓ) = (pnℓqnℓt̃nℓ) ∗ (rn′ℓsn′ℓr̃n′ℓp̃n′ℓ).

Note that t̃nℓ begins with a successor of PnJn and due to our assumption this

letter does not appear in rn′ℓ. On the other hand rn′ℓsn′ℓ contains a successor

of Qn′0 which does not appear in t̃nℓ. Since in the reduction process in the

course of a group product only letters cancel out which appear in both
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factors (cf. Lemma 4.1) we get

γℓm(ωnℓ ∗ ωn′ℓ) � Pn1 . . . PnJnQn0PnJnQn′0Pn,Jn−1 . . . Pn1

and again we conclude that |σm(h((CnCn′)i))| is not bounded for i→∞, a

contradiction. Thus we have proved Qn′0 = PnJn .

Ad (2)(b). With notation as before we have ωn′ℓ = pn′ℓrn′ℓsn′ℓr̃n′ℓp̃n′ℓ and

ωnℓ = pn′ℓ ∗ (tnℓrnℓsnℓr̃nℓp̃nℓ). Now we consider

ωi
n′ℓ ∗ ωnℓ = (pn′ℓrn′ℓs

i
n′ℓr̃n′ℓ) ∗ (tnℓrnℓsnℓr̃nℓp̃nℓ)

where the exponent i ∈ N will be specified later. Concerning the cancella-

tions in the product we quote the following properties:

(I) The word rnℓsnℓr̃nℓ contains a successor ofQn0 and the first occurrence

of such a letter is either in rnℓ or snℓ. Such a letter does not occur in

rn′ℓs
i
n′ℓr̃n′ℓ since this word among successors of letters fromDm only contains

successors of Qn′0 = PnJn and we have PnJn 6= Qn0.

(II) We choose i = i0 so large that |si−1n′ℓ | > |tnℓrnℓsnℓ|. This is possible

since due to ωn′ℓ 6= e we have |sn′ℓ| ≥ 3.

(III) By Lemma 4.1 we know that in a product a ∗ b of two reduced

words a and b the number of letters canceling out is the same for a and b

and that a letter P from a can cancel out only if P also appears in b at the

corresponding position.

With regard to (I)–(III) we obtain

ωi
n′ℓ ∗ ωnℓ = pn′ℓrn′ℓsn′ℓ . . . s

(1)
nℓ r̃nℓp̃nℓ

where s
(1)
nℓ is a suffix of snℓ and

γℓm(ω
i
n′ℓ ∗ ωn′ℓ) = γℓm( pn′ℓ︸︷︷︸

↓

Pn1...Pn,Jn−1

rn′ℓsn′ℓ︸ ︷︷ ︸
↓

PnJn

. . . s
(1)
nℓ r̃nℓ︸ ︷︷ ︸

↓

Qn0

p̃nℓ︸︷︷︸
↓

PnJn ...Pn1

) =

Pn1 . . . PnJnQn0PnJn . . . Pn1.

In view of Proposition 5.5, ωi
n′ℓ∗ωnℓ must have the form ωi

n′ℓ∗ωnℓ = p
(i)
nℓq

(i)
nℓ p̃

(i)
nℓ

with the corresponding properties for p
(i)
nℓ and q

(i)
nℓ for all i ≥ i0.

Next we show that sn′ℓ does not contain a successor of PnJn . Assume

the contrary then by increasing i the last occurrence of a successor of PnJn

before the first occurrence of a successor of Qn0 in the word ωi
n′ℓ∗ωn′ℓ (up to

this letter all letters belong to p
(i)
nℓ ) can be made in arbitrary distance from

the beginning. On the other hand, the occurrence of successors of PnJn on

the rear end of ωi
n′ℓ ∗ ωnℓ is not influenced by the choice of i. Therefore a

representation in the form ωi
n′ℓ ∗ ωnℓ = p

(i)
nℓq

(i)
nℓ p̃

(i)
nℓ with |γℓm(q

(i)
nℓ )| = 1 is not

possible. We conclude that sn′ℓ cannot contain a successor of PnJn and thus

does not contain a successor of any letter from Dm at all.
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The argument in the last part shows that p̃
(i)
nℓ = p̃nℓ for all i ≥ i0 and we

obtain

pn′ℓrn′ℓsn′ℓ . . . s
(1)
nℓ r̃nℓp̃nℓ = pnℓq

(i)
nℓ p̃nℓ.

Comparing the prefixes of the left and the right side in this equation and

taking into account that sn′ℓ does not contain successors of PnJn we get that

pnℓ is a prefix of pn′ℓrn′ℓ and also p̃nℓ ∗ (pn′ℓrn′ℓsn′ℓ) does not (except from

the first letter) contain a successor of a letter from Dm.

Ad (3). Assume Qn′0 6= Qn0, then with the same notation and similar

arguments as before we get

γℓm(ωn′ℓ ∗ ωn′ℓ) = γℓm(( pn′ℓ︸︷︷︸
↓

Pn1...PnJn

rn′ℓsn′ℓr̃n′ℓ︸ ︷︷ ︸
↓

Qn′0

) ∗ ( tnℓ︸︷︷︸
↓

PnJn

rnℓsnℓr̃nℓ︸ ︷︷ ︸
↓

Qn0

p̃nℓ︸︷︷︸
↓

PnJn ...Pn1

)) �

� Pn1 . . . PnJnQn′0Qn0PnJn . . . Pn1.

Thus |σm(h((CnCn′)i))| → ∞ for i → ∞ in contrast to Proposition 5.4,

hence Qn0 = Qn′0.

In the case pnℓ 6= pn′ℓ we would get

γℓm(ωn′ℓ ∗ ωn′ℓ) = Pn1 . . . PnJnQn0PnJnQn0PnJn . . . Pn1

which, once more, leads to a contradiction to Proposition 5.4. �

Employing the same notation as before we can consider the following

two sets:

Nm1 := {n ≥ n0(m) | σm(h(Cn)) = Pn1 . . . PnJnQn0PnJn . . . Pn1},
Nm2 := {n ≥ n0(m) | σm(h(Cn)) = Pn1 . . . Pn,Jn−1PnJnPn,Jn−1 . . . Pn1}.

We may choose the letters Pn1, . . . , PnJn , Qn0 in such a way that always

Nm1 6= ∅ whereas Nm2 may be empty. Moreover, if Nm1 is finite, we enlarge

n0(m) and readjust the letters such that Nm1 is infinite and n0(m) ∈ Nm1.

Proceeding inductively by m we may assume that n0(m) ≤ n0(m + 1).

According to Proposition 5.7 we have Nm1 ∪Nm2 = {n ∈ N | n ≥ n0(m)}.

Now the dependence on m of pnℓ occurring in the statement of Proposi-

tion 5.5 becomes important. Note that n0, ℓ0, Jn, pnℓ, qnℓ in Proposition 5.5

and 5.7 depend on m while ωnℓ is independent of m. In the sequel we

will indicate this dependence on m by using a superscript (m), e.g., ωnℓ =

p
(m)
nℓ q

(m)
nℓ p̃

(m)
nℓ .

By Proposition 5.7 we have for all n, n′ ≥ n0(m) satisfying ωnℓ, ωn′ℓ 6= e

that p
(m)
nℓ = p

(m)
n′ℓ if n, n′ ∈ Nm1 and p

(m)
nℓ is a prefix of p

(m)
n′ℓ r

(m)
n′ℓ if n ∈ Nm1

and n′ ∈ Nm2. Note that n = n0(m) satisfies ωnℓ 6= e if σm(h(Ck)) 6= e for

at least one k ≥ n0(m).

So for ℓ ≥ ℓ0(n0(m),m) we define t
(m)
ℓ := p

(m)
n0(m)ℓ. Then for all n ≥ n0(m)

and ℓ ≥ ℓ0(n,m) satisfying ωnℓ 6= e we obtain a representation of the
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form ωnℓ = t
(m)
ℓ y

(m)
nℓ t̃

(m)
ℓ with |γℓm(y

(m)
nℓ )| ≤ 1, and for n ∈ Nm1 we have

p
(m)
nℓ = t

(m)
ℓ .

Proposition 5.8. For all m ≥ 0 and ℓ ≥ max{ℓ0(n0(m),m), ℓ0(n0(m +

1),m+ 1)} we have

(1) t
(m)
ℓ is a prefix of t

(m+1)
ℓ ,

(2) t̃
(m)
ℓ ∗t

(m+1)
ℓ contains only letters which (as belts) lie in the two closed

m-stars attached to Q
(m)
n0 .

(3) For all ℓ′ > ℓ ≥ ℓ0(n0(m),m) we have δℓ′ℓ(t
(m)
ℓ′ ) = t

(m)
ℓ .

Proof. Ad (1). Since n0(m+1) ≥ n0(m) we have representations of the form

ωn0(m+1)ℓ = p
(m)
n0(m+1)ℓ q

(m)
n0(m+1)ℓ p̃

(m)
n0(m+1)ℓ = p

(m+1)
n0(m+1)ℓ q

(m+1)
n0(m+1)ℓ p̃

(m+1)
n0(m+1)ℓ.

Assuming that p
(m)
n0(m+1)ℓ is not a prefix of p

(m+1)
n0(m+1)ℓ immediately leads to

the property that q
(m+1)
n0(m+1)ℓ contains successors of more than one letter from

Dm and therefore also successors of more than one letter from Dm+1 which

is a contradiction to Proposition 5.5. Therefore p
(m)
n0(m+1)ℓ is always a prefix

of p
(m+1)
n0(m+1)ℓ. By definition we have t

(m+1)
ℓ = p

(m+1)
n0(m+1)ℓ. Now we show that

t
(m)
ℓ = p

(m)
n0(m+1)ℓ which yields (1). By the choice of n0(m + 1) we have that

|σm+1(h(Cn0(m+1)))| is maximal among all |σm+1(h(Cn))| for n ≥ n0(m+1).

Therefore also |σm(h(Cn0(m+1)))| = |γm+1(σm+1(h(Cn0(m+1))))| is maximal

among all |σm(h(Cn))| for n ≥ n0(m + 1). Since |Nm1| = ∞ we know that

this maximum equals |σm(h(Cn0(m)))|. So with Proposition 5.7 we obtain

γℓm(ωn0(m+1)ℓ) = σm(h(Cn0(m+1))) = σm(h(Cn0(m))),

and this implies t
(m)
ℓ = p

(m)
n0(m+1)ℓ.

Ad (2). From the representation we got in the proof of (1)

ωn0(m+1)ℓ = t
(m)
ℓ q

(m)
n0(m+1)ℓ t̃

(m)
ℓ = t

(m+1)
ℓ q

(m+1)
n0(m+1)ℓ t̃

(m+1)
ℓ

we obtain that t̃
(m)
ℓ ∗ t

(m+1)
ℓ = p̃

(m)
nℓ ∗ p

(m+1)
nℓ is a word beginning with a level

ℓ successor of P
(m)
nJn

followed by a prefix of q
(m)
nℓ which yields the assertion.

(3) follows immediately from

δℓ′ℓ(p
(m)
nℓ′ q

(m)
nℓ′ p̃

(m)
nℓ′ ) = δℓ′ℓ(ωnℓ′) = ωnℓ = p

(m)
nℓ q

(m)
nℓ p̃

(m)
nℓ

and the properties of p
(m)
nℓ = t

(m)
ℓ for n ∈ Nm1 proved in Proposition 5.5. �

If we now define t
(m)
ℓ := δℓ0(n0(m),m)ℓ(t

(m)
ℓ0(n0(m),m)) for 0 ≤ ℓ < ℓ0(m) by (3)

of Proposition 5.8 we arrive at a sequence (t
(m)
ℓ )ℓ≥0 satisfying δℓ′ℓ(t

(m)
ℓ′ ) = t

(m)
ℓ

for all ℓ′ > ℓ ≥ 0. Thus this sequence (t
(m)
ℓ )ℓ≥0 corresponds to a canonical

path t(m) from the base point x0 to some point x∗m lying in the belt P
(m)
nJn

.
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Due to Proposition 5.8 (1) we obtain that the path t(m) is a prefix section

of the path t(m+1), and Proposition 5.8 (2) implies that t(m) converges for

m→∞ to a path t from the base point x0 to some point x∗ = limm→∞ x
∗
m

in X. (2) also implies that x∗ lies in one of the two closed m-stars attached

to Q
(m)
n0 for all m ≥ 0. This path t has a word representation of the form

(tℓ)ℓ≥0 such that t
(m)
ℓ is a prefix of tℓ and t̃

(m)
ℓ ∗ tℓ can contain successors

of at most 3 different letters from Dm which are P
(m)

nJ
(m)
n

, Q
(m)
n0 and another

neighbor P (m) of Q
(m)
n0 in Dm which contains x∗ (cf. Proposition 5.8 (2)).

Let hn denote the minimal loop representing the homotopy class h(Cn)

considered in Proposition 3.5 (ii). In the next proposition we will show that

the path t is such that the loop t−1hn t in (X, x∗) is homotopic to a loop

that stays arbitrarily near to x∗ when n tends to infinity.

Proposition 5.9. For n tending to infinity the minimal representative of

the homotopy class of the loop t−1hnt in π(X, x
∗) tends to the constant loop

x∗.

Proof. We show that for all m ≥ 0 and for all n ≥ n0(m) the word

σm(t
−1hn t) contains only letters which (as belts) lie in the two m-stars

attached to Q
(m)
n0 . This proves the assertion.

The loop t−1hn t corresponds to the sequence (t̃ℓ ∗ωnℓ ∗ tℓ)ℓ≥0 := (xℓ)ℓ≥0.

For ℓ ≥ ℓ0(n,m) we have xℓ = t̃ℓ ∗ (t
(m)
ℓ y

(m)
nℓ t̃

(m)
ℓ ) ∗ tℓ. Employing the consid-

erations before Proposition 5.9 we obtain

σm(t
−1hn t) = γℓm(xℓ) � P (m)Q

(m)
n0 P

(m)

nJ
(m)
n

Q
(m)
n0 P

(m)

nJ
(m)
n

Q
(m)
n0 P

(m)

and we are done. �

In the following main result of this section we use the conjugacy map

χz : π(X, x∗) → π(X, x0), χz([f ]) = [z f z−1] where z is a path from x0 to

x∗.

Theorem 5.10 (Eda [11, Theorem 1.1]). Let (X, x0) be a metrizable one-

dimensional continuum. Then for each homomorphism h from π(E, o) to

π(X, x0) there exists a point x∗ ∈ X, a path t from x0 to x∗ and a con-

tinuous map ψ : E → X such that h = χt ◦ ψ∗, i.e, h is conjugate to the

homomorphism ψ∗ : π(E, o)→ π(X, x∗) induced by ψ.

If the range of h is not finitely generated, x∗ is unique and t is unique

up to homotopy relative to the end points.

Proof. Let t be the path corresponding to the sequence (tℓ)ℓ≥0 defined before

Proposition 5.9 and hn the minimal representative of the homotopy class

h(Cn). We fix parametrizations hn(x) and Cn(x), x ∈ [0, 1], of t−1hn t and
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Cn, respectively, where we assume that Cn(x) is injective. This can be used

to define the mapping ψ : E → X by ψ(Cn(x)) = hn(x).

First we consider the case where ran(h) is finitely generated. By Lemma 5.2

h(Cn) = e is the neutral element for all but finitely many n ∈ N. Then ob-

viously ψ is continuous and h = ψ∗. In this case the result follows by setting

x∗ = x0 and t the constant path in x0.

Now assume that ran(h) is not finitely generated and w.l.o.g. h(Cn) 6= e

for all n ∈ N. Proposition 5.9 implies that the sequence of paths (t−1hn t)n∈N

converges to the constant path x∗. This implies that ψ is continuous also in

this case. Observing that

h(Cn) = [t t−1 hn t t
−1] = χt([t

−1 hn t]) = χt(ψ∗(Cn))

proves the existence part of the assertion.

The uniqueness of x∗, ψ∗ and t is easily derived in the same way as in

the proof of [11, Theorem 1.1]. �
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