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ABSTRACT. In this paper we introduce and study three new cardinal topologi-
cal invariants called the cs*-, cs-, and sb-characters. The class of topological s-
paces with countable cs*-character is closed under many topological operations
and contains all X-spaces and all spaces with point-countable cs*-network. Our
principal result states that each non-metrizable sequential topological group
with countable cs*-character has countable pseudo-character and contains an
open k-subgroup. This result is specific for topological groups: under Martin
Axiom there exists a sequential topologically homogeneous k. -space X with
No = cs} (X) < ¢(X).

INTRODUCTION

In this paper we introduce and study three new local cardinal invariants of
topological spaces called the sb-character, the cs-character and cs*-character, and
describe the structure of sequential topological groups with countable cs*-character.
All these characters are based on the notion of a network at a point x of a topological
space X, under which we understand a collection N of subsets of X such that for
any neighborhood U C X of z there is an element N € N with z € N C U, see
[Lin].

A subset B of a topological space X is called a sequential barrier at a point
x € X if for any sequence (x,)ne, C X convergent to x, there is m € w such that
x, € B for all n > m, see [Lin]. It is clear that each neighborhood of a point z € X
is a sequential barrier for x while the converse in true for Fréchet-Urysohn spaces.

Under a sb-network at a point x of a topological space X we shall understand
a network at x consisting of sequential barriers at . In other words, a collection
N of subsets of X is a sb-network at = if for any neighborhood U of = there is an
element N of A such that for any sequence (x,) C X convergent to = the set N
contains almost all elements of (z,). Changing two quantifiers in this definition by
their places we get a definition of a cs-network at x.

Namely, we define a family N of subsets of a topological space X to be a cs-
network (resp. a cs*-network) at a point x € X if for any neighborhood U C X of
x and any sequence (z,) C X convergent to x there is an element N € N such that
N C U and N contains almost all (resp. infinitely many) members of the sequence
(z,). A family N of subsets of a topological space X is called a cs-network (resp.
cs*-network) if it is a cs-network (resp. cs*-network) at each point = € X, see [Na].

The smallest size |N| of an sb-network (resp. cs-network, cs*-network) N at
a point € X is called the sb-character (resp. cs-character, cs*-character) of
X at the point x and is denoted by sb, (X, ) (resp. csy (X, z), cs}(X,z)). The
cardinals sby (X) = sup,cy sby (X, ), cs,(X) = sup,¢ex csy (X, z) and cs}(X) =
sup, ¢ x sy (X, z) are called the sb-character, cs-character and cs*-character of the
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topological space X, respectively. For the empty topological space X = () we put
sby (X) = csy (X) = esp(X) = 1.

In the sequel we shall say that a topological space X has countable sb-character
(resp. cs-, cs™-character) if sby (X) < Vg (resp. csy(X) < Vo, ¢s7(X) < Rg). In
should be mentioned that under different names topological spaces with countable
sb- or cs-character have already occured in topological literature. In particular, a
topological space has countable cs-character if and only if it is ¢sf-countable in
the sense of [Lin]; a (sequential) space X has countable sb-character if and only
if it is universally csf-countable in the sense of [Lin] (if and only if it is weakly
first-countable in the sense of [Ar;] if and only if it is O0-metrizable in the sense
of Nedev [Ne]). From now on, all the topological spaces considered in the paper
are Ty-spaces. At first we consider the interplay between the characters introduced
above.

Proposition 1. Let X be a topological space. Then

(1) esy(X) < sy (X) < sby (X) < x(X);

(2) x(X) =sby(X) if X is Fréchet-Urysohn;

(3) esy(X) < Ng iff ey (X) < N iff sby (X) < Rg iff es}(X) =1 iff es (X) =1
iff sby (X) =1 iff each convergent sequence in X is trivial;

(4) sby (X) < 2559,

(5) csy (X) < est(X) - sup{|[R]S¥] : & < es2(X)} < (es3(X))™ where

(K]S9 = {A C k:|A] < R}

Here “iff” is an abbreviation for “if and only if”. The Arens’ space S> and
the sequential fan S, give us simple examples distinguishing between some of
the characters considered above. We recall that the Arens’ space S is the set
{(0,0),(%,0),(+,-1) : n,m € N} C R? carrying the strongest topology inducing
the original planar topology on the convergent sequences Cy = {(0,0), (%, 0):ne€
N} and C,, = {(£,0),(%,-1) : m € N}, n € N. The quotient space S,, = S2/C
obtained from the Arens’ space Sy by identifying the points of the sequence Cj is
called the sequential fan, see [Lin]. The sequential fan S, is the simplest example
of a non-metrizable Fréchet-Urysohn space while S5 is the simplest example of a
sequential space which is not Fréchet-Urysohn.

We recall that a topological space X is sequential if a subset A C X if closed if
and only if A is sequentially closed in the sense that A contain the limit point of
any sequence (a,) C A, convergent in X. A topological space X is Fréchet-Urysohn
if for any cluster point @ € X of a subset A C X there is a sequence (a,) C A,
convergent to a.

Observe that Ng = cs}(S2) = 5,(S2) = sby(S2) < x(S2) = 0 while Ry =
sy (Sw) = e8y(Sw) < sby(Sw) = x(S,) = 0. Here 0 is the well-known in Set
Theory small uncountable cardinal equal to the cofinality of the partially ordered
set N¥ endowed with the natural partial order: (z,) < (y,) iff z,, < y, for all n, see
[Va]. Besides d, we will need two other small cardinals: b defined as the smallest
size of a subset of uncountable cofinality in (N“| <), and p equal to the smallest size
|F| of a family of infinite subsets of w closed under finite intersections and having
no infinite pseudo-intersection in the sense that there is no infinite subset I C w
such that the complement I \ F' is finite for any F' € F, see [Va], [vD]. It is known
that Xy < p < b <0 < ¢ where ¢ stands for the size of continuum. Martin Axiom
implies p = b = 0 = ¢, [MS]. On the other hand, for any uncountable regular
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cardinals A < k there is a model of ZFC with p = b =0 = X and ¢ = &, see [vD,
5.1].

Unlike to the cardinal invariants cs,, sb, and x which can be distinguished on
simple spaces, the difference between the cardinal invariants cs, and csy is more
subtle: they cannot be distinguished in some models of Set Theory!

Proposition 2. Let X be a topological space. Then cs}(X) = csy(X) provided one
of the following conditions is satisfied:

(1) es}(X) <p;

(2) k% < cs3(X) for any cardinal k < cs}(X);

(3) p=c and \* < k for any cardinals A < k > ¢;

(4) p = ¢ (this is so under MA) and X is countable;

(5) the Generalized Continuum Hypothesis holds.

Unlike to the usual character, the cs*-, cs-, and sb-characters behave nicely with
respect to many countable topological operations.

Among such operation there are: the Tychonov product, the box-product, pro-
ducing a sequentially homeomorphic copy, taking image under a sequentially open
map, and forming inductive topologies.

As usual, under the box-product O;c7X; of topological spaces X;, i € I, we
understand the Cartesian product [],.; X; endowed with the box-product topology
generated by the base consisting of products [];.; U; where each U; is open in X;.
In contrast, by [[;c; Xi we denote the usual Cartesian product of the spaces Xj,
endowed with the Tychonov product topology.

We say that a topological space X carries the inductive topology with respect to a
cover C of X if a subset F' C X is closed in X if and only if the intersection F'NC is
closed in C for each element C € C. For a cover C of X let ord(C) = sup,¢x ord(C, z)
where ord(C,z) = |{C € C: z € C'}|. A topological space X carrying the inductive
topology with respect to a countable cover by closed metrizable (resp. compact,
compact metrizable) subspaces is called an M, -space (resp. a k,-space, MK, -
space).

A function f: X — Y between topological spaces is called sequentially continu-
ous if for any convergent sequence (z,) in X the sequence (f(x,)) is convergent in
Y to f(limzy,); f is called a sequential homeomorphism if f is bijective and both
f and f~! are sequentially continuous. Topological spaces X,Y are defined to be
sequentially homeomorphic if there is a sequential homeomorphism A : X — Y.
Observe that two spaces are sequentially homeomorphic if and only if their se-
quential coreflexions are homeomorphic. Under the sequential coreflexion o X of a
topological space X we understand X endowed with the topology consisting of all
sequentially open subsets of X (a subset U of X is sequentially open if its comple-
ment is sequentially closed in X; equivalently U is a sequential barrier at each point
x € U). Note that the identity map id : X — X is continuous while its inverse is
sequentially continuous, see [Lin].

A map f: X = Y is sequentially open if for any point o € X and a sequence
S C Y convergent to f(xo) there is a sequence T' C X convergent to xo and such
that f(T) C S. Observe that a bijective map f is sequentially open if its inverse
f~! is sequentially continuous.

The following technical Proposition is an easy consequence of the corresponding
definitions.
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Proposition 3. (1) If X is a subspace of a topological space Y, then cs} (X) <
sy (Y), ey (X) < esy(Y) and sby (X) <sb(Y).
(2) If f: X = Y is a surjective continuous sequentially open map between
topological spaces, then csy (Y) < csy(X) and sby(Y) < sby (X).
(3) If f: X = Y is a surjective sequentially continuous sequentially open
map between topological spaces, then min{cs} (Y),N;} < min{cs} (X),N;},
min{cs, (Y), N1} < min{cs, (X), N1}, and min{sb, (Y"),R; } < min{sb, (X),

N
(4) If X,Y are sequentially homeomorphic topological spaces, then min{cs} (X), R

min{csy (X), Ny} = min{cs, (V),®;} = min{cs} (Y), R}, and min{sb, (Y), N, } =

min{sb, (X),R; }.
(5) min{sb, (X), X1} = min{sh, (¢X), N} <sb, (6 X) > sb,(X) and

sy (X) < esy(0X) > min{esy (0X), N, } = min{cs, (X), ¥} = min{es) (X), Ny} =

min{cs} (0.X), Ry} < csy(0X) > csy(X) for any topological space X.

(6) If X = [l;cq Xi is the Tychonov product of topological spaces X;, i €
Z, then csy(X) < Y ez esy(Xi), esy(X) < Dz o8y (Xi) and sby(X) <
ez Sbx (Xi)-

(7) If X = O;ezX; is the boz-product of topological spaces X;, i € I, then
es}(X) <3 ez esi(Xs) and esy (X) < 37ic7 o5y (Xi).

(8) If a topological space X carries the inductive topology with respect to a cover
C of X, then csy (X) < ord(C) - supcec csy (C).

(9) If a topological space X carries the inductive topology with respect to a
point-countable cover C of X, then csy (X) < suppee csy(C).

(10) If a topological space X carries the inductive topology with respect to a
point-finite cover C of X, then sby (X) < supcece sby (C).

Since each first-countable space has countable cs*-character, it is natural to
consider the class of topological spaces with countable cs*-character as a class of
generalized metric spaces. However this class contains very non-metrizable spaces
like AN, the Stone-Cech compactification of the discrete space of positive integers.
The reason is that SN contains no non-trivial convergent sequence. To avoid such
pathologies we shall restrict ourselves by sequential spaces. Observe that a topo-
logical space is sequential provided X carries the inductive topology with respect
to a cover by sequential subspaces. In particular, each M,-space is sequential
and has countable cs*-character. Our principal result states that for topological
groups the converse is also true. Under an M, -group (resp. MK, -group) we un-
derstand a topological group whose underlying topological space is an M-space
(resp. MK, -space).

Theorem 1. Each sequential topological group G with countable cs*-character is
an M, -group. More precisely, either G is metrizable or else G contains an open
MK, -subgroup H and is homeomorphic to the product H x D for some discrete
space D.

For M,-groups the second part of this theorem was proven in [Ba;]. Theorem 1
has many interesting corollaries.

At first we show that for sequential topological groups with countable cs*-
character many important cardinal invariants are countable, coincide or take some
fixed values. Let us remind some definitions, see [En;]. For a topological space X
recall that
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e the pseudocharacter ¥(X) is the smallest cardinal x such that each one-
point set {x} C X can be written as the intersection {x} = N of some
family U of open subsets of X with |U| < &;

e the cellularity ¢(X) is the smallest cardinal x such that X contains no family
U of size |U| > & consisting of non-empty pairwise disjoint open subsets;

e the Lindeldf number I(X) is the smallest cardinal x such that each open
cover of X contains a subcover of size < k;

e the density d(X) is the smallest size of a dense subset of X;

e the tightness t(X) is the smallest cardinal x such that for any subset A C X
and a point a € A from its closure there is a subset B C A of size |B| < k
with a € B;

e the extent e(X) is the smallest cardinal x such that X contains no closed
discrete subspace of size > k;

e the compact covering number kc(X) is the smallest size of a cover of X by
compact subsets;

e the weight w(X) is the smallest size of a base of the topology of X;

e the network weight nw(X) is the smallest size | V| of a topological network
for X (a family N of subsets of X is a topological network if for any open
set U C X and any point « € U there is N € A/ with z € N C U);

o the k-network weight knw(X) is the smallest size |N| of a k-network for
X (a family A of subsets of X is a k-network if for any open set U C X
and any compact subset K C U there is a finite subfamily M C A with
KcuMcU).

For each topological space X these cardinal invariants relate as follows:
max{c(X),l(X),e(X)} < nw(X) < knw(X) < w(X).

For metrizable spaces all of them are equal, see [Eng, 4.1.15].

In the class of k-spaces there is another cardinal invariant, the k-ness introduced
by E. van Douwen, see [vD, §8]. We remind that a topological space X is called
a k-space if it carries the inductive topology with respect to the cover of X by all
compact subsets. It is clear that each sequential space is a k-space. The k-ness
kE(X) of a k-space is the smallest size || of a cover K of X by compact subsets such
that X carries the inductive topology with respect to the cover K. It is interesting
to notice that k(N¥) = 0 while k(Q) = b, see [vD]. Proposition 3(8) implies that
sy (X) < E(X)-9(X) > ke(X) for each k-space X. Observe also that a topological
space X is a k,-space if and only if X is a k-space with k(X) < R,.

Besides cardinal invariants we shall consider an ordinal invariant, called the
sequential order. Under the sequential closure A of a subset A of a topological
space X we understand the set of all limit point of sequences (a,) C A, convergent
in X. Given an ordinal o define the a-th sequential closure A(®) of A by transfinite
induction: A(®) = U5<a(A(B))(1)- Under the sequential order so(X) of a topological
space X we understand the smallest ordinal a such that A(*tD = A for any
subset A C X. Observe that a topological space X is Fréchet-Urysohn if and only
if so(X) < 1; X is sequential if and only if clx (A) = A®°(X)) for any subset A C X.

Besides purely topological invariants we shall also consider a cardinal invariant,
specific for topological groups. For a topological group G let ib(G), the boundedness
index of G be the smallest cardinal & such that for any nonempty open set U C G
there is a subset F' C G of size |F| < &k such that G = F - U. It is known that
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ib(G) < min{c(G@),(G),e(G)} and w(G) = ib(G) - x(G) for each topological group,
see [Tk].

Theorem 2. Fach sequential topological group G with countable cs*-character has
the following properties: (G) < N, sby (G) = x(G) € {1,R,0}, ib(G) = ¢(G) =
d(G) =1(G) = e(G) = nw(G) = knw(G), and so(G) € {1,w;}.

We shall derive from Theorems 1 and 2 an unexpected metrization theorem for
topological groups. But first we need to remind the definitions of some of a;-spaces,
i =1,...,6 introduced by A.V. Arkhangelski in [Ars], [Ars]. We also define a wider
class of az-spaces.

A topological space X is called

e an «ap-space if for any sequences S, C X, n € w, convergent to a point
x € X there is a sequence S C X convergent to = and such that S, \ S is
finite for all n;

e an ay-space if for any sequences S, C X, n € w, convergent to a point
x € X there is a sequence S C X convergent to z and such that S, NS # (
for infinitely many sequences Sy;

e an az-space if for any sequences S, C X, n € w, convergent to a point
x € X there is a sequence S C X convergent to some point y of X and
such that S, NS # @ for infinitely many sequences Sy;

Under a sequence converging to a point x of a topological space X we understand
any countable infinite subset S of X such that S\ U if finite for any neighborhood
U of z. Each ay-space is ay and each a4-space is a7. Quite often az-spaces are ay,
see Lemma 7. Observe also that each sequentially compact space is a7. It can be
shown that a topological space X is an az-space if and only if it contains no closed
copy of the sequential fan S, in its sequential coreflexion o X. If X is an ay-space,
then ¢ X contains no topological copy of S, .

We remind that a topological group G is Weil complete if it is complete in
its left (equivalently, right) uniformity. According to [PZ, 4.1.6], each k,-group
is Weil complete. The following metrization theorem can be easily derived from
Theorems 1, 2 and elementary properties of MK, -groups.

Theorem 3. A sequential topological group G with countable cs*-character is metriz-
able if one of the following conditions is satisfied:

(1) s ( ) <wi;

(2) sby(G) <0;

(3) i ( ) < k(G);

(4) G is Fréchet-Urysohn;

(5) G is an az-space;

(6) G contains no closed copy of S, or Sa;
(7) G is not Weil complete;

(8) G is Baire;

(9) (@) < |G| < 2.

According to Theorem 1, each sequential topological group with countable cs*-
character is an M,,-group. The first author has proved in [Bag] that the topological
structure of a non-metrizable punctiform M,,-group is completely determined by
its density and the compact scatteredness rank.
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Recall that a topological space X is punctiform if X contains no compact con-
nected subspace containing more than one point, see [Ens, 1.4.3]. In particular,
each zero-dimensional space is punctiform.

Next, we remind the definition of the scatteredness height. Given a topological
space X let X(;) C X denote the set of all non-isolated points of X. For each
ordinal « define the a-th derived set X(,) of X by transfinite induction: X, =
MNs<a(X(s)))- Under the scatteredness height sch(X) of X we understand the
smallest ordinal a such that X(,11) = X(4). A topological space X is scattered if
X(a) = 0 for some ordinal a.. Under the compact scatteredness rank of a topological
space X we understand the ordinal scr(X) = sup{sch(K) : K is a scattered compact
subspace of X }.

Theorem 4. Two non-metrizable sequential punctiform topological groups G, H
with countable cs*-character are homeomorphic if and only if d(G) = d(H) and
scr(G) = scr(H).

This theorem follows from Theorem 1 and “Main Theorem” of [Bag] asserting
that two non-metrizable punctiform M,-groups G, H are homeomorphic if and
only if d(G) = d(H) and scr(G) = scr(H). For countable k,-groups this fact was
proven by E.Zelenyuk [Ze;].

The topological classification of non-metrizable sequential locally convex spaces
with countable cs*-character is even more simple. Any such a space is homeomor-
phic either to R* or to R* x () where @) = [0,1]“ is the Hilbert cube and R* is a
linear space of countable algebraic dimension, carrying the strongest locally convex
topology. It is well-known that this topology is inductive with respect to the cov-
er of R® by finite-dimensional linear subspaces. The topological characterization
of the spaces R* and R* x @) was given in [Sa]. In [Bas] it was shown that each
infinite-dimensional locally convex MK, -space is homeomorphic to R*® or R* x Q.
This result together with Theorem 1 implies the following classification

Corollary 1. FEach non-metrizable sequential locally convex space with countable
cs*-character is homeomorphic to R* or R® x Q.

As we saw in Theorem 2, each sequential topological group with countable cs*-
character has countable pseudocharacter. The proof of this result is based on
the fact that compact subsets of sequential topological groups with countable cs*-
character are first countable. This naturally leads to a conjecture that compact
spaces with countable cs*-character are first countable. Surprisingly, but this con-
jecture is false: assuming the Continuum Hypothesis N. Yakovlev [Ya] has con-
structed a scattered sequential compactum which has countable sb-character but
fails to be first countable. In [Ny,] P.Nyikos pointed out that the Yakovlev con-
struction still can be carried under the assumption b = ¢. More precisely, we have

Proposition 4. Under b = ¢ there is a regqular locally compact locally count-
able space Y whose one-point compactification Y is sequential and satisfies Rg =
sby (aY) < ¢(aY) =c.

We shall use the above proposition to construct examples of topologically ho-
mogeneous spaces with countable cs-character and uncountable pseudocharacter.
This shows that Theorem 2 is specific for topological groups and cannot be gener-
alized to topologically homogeneous spaces. We remind that a topological space X
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is topologically homogeneous if for any points x,y € X there is a homeomorphism
h: X — X with h(z) = y.

Theorem 5.

(1) There is a topologically homogeneous countable regular k,-space X1 with
Ro = sby (X71) < x(X1) =0 and so(X1) = w;

(2) Under b = ¢ there is a sequential topologically homogeneous zero-dimensional
k. -space Xo with Nog = cs,(X2) < ¥(X2) = ¢;

(3) Under b = ¢ there is a sequential topologically homogeneous totally discon-
nected space Xz with Rg = sb, (X3) < ¢(X3) =¢.

We remind that a space X is totally disconnected if for any distinct points z,y €
X there is a continuous function f: X — {0, 1} such that f(z) # f(y), see [Ens].

Remark 1. The space X; from Theorem 5(1) is the well-known Arkhangelski-
Franklin example [AF] (see also [Co, 10.1]) of a countable topologically homoge-
neous k,-space, homeomorphic to no topological group (this also follows from The-
orem 2). On the other hand, according to [Zes], each topologically homogeneous
countable regular space (in particular, X;) is homeomorphic to a quasitopological
group, that is a topological space endowed with a separately continuous group oper-
ation with continuous inversion. This shows that Theorem 2 cannot be generalized
onto quasitopological groups (see however [Zd] for generalizations of Theorems 1
and 2 to some other topologo-algebraic structures).

Next, we find conditions under which a space with countable cs*-character is first-
countable or has countable sb-character. Following [Ars] we define a topological
space X to be c-sequential if for each closed subspace Y C X and each non-isolated
point y of Y there is a sequence (y,) C Y \ {y} convergent to y. It is clear that
each sequential space is ¢-sequential. A point z of a topological space X is called
reqular G5 if {x} = NB for some countable family B of closed neighborhood of z in
X, see [Lin].

First we characterize spaces with countable sb-character (the first three items
of this characterization were proved by Lin [Lin, 3.13] in terms of (universally)
cs f-countable spaces).

Proposition 5. For a Hausdorff space X the following conditions are equivalent:

(1) X has countable sb-character;
(2) X is an a;-space with countable cs*-character;
(3) X is an as-space with countable cs*-character;
(4) esy(X) < Ng and sby (X) < p.
Moreover, if X is c-sequential and each point of X is reqular G, then the conditions
(1)-(4) are equivalent to:
(5) cs}(X) <Ny and sb, (X) <.

Next, we give a characterization of first-countable spaces in the same spirit (the
equivalences (1) & (2) < (5) were proved by Lin [Lin, 2.8]).
Proposition 6. For a Hausdorff space X with countable cs*-character the following
conditions are equivalent:
(1) X is first-countable;
(2) X is Fréchet-Urysohn and has countable sb-character;
(3) X is Fréchet-Urysohn az-space;
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(4) x(X) <p and X has countable tightness.
Moreover, if each point of X is reqular G5, then the conditions (1)-(4) are equivalent
to:
(5) X is a sequential space containing no closed copy of Sa or S, ;
(6) X is a sequential space with x(X) < 0.

For Fréchet-Urysohn (resp. dyadic) compacta the countability of the cs*-character
is equivalent to the first countability (resp. the metrizability). We remind that a
compact Hausdorff space X is called dyadic if X is a continuous image of the Cantor
discontinuum {0, 1}" for some cardinal .

Proposition 7.

(1) A Fréchet-Urysohn countably compact space is first-countable if and only if
it has countable cs*-character.

(2) A dyadic compactum is metrizable if and only if its has countable cs*-
character.

In light of Proposition 7(1) one can suggest that cs} (X) = x(X) for any compact
Fréchet-Urysohn space X. However that is not true: under CH, cs, (aD) # x(aD)
for the one-point compactification aD of a discrete space D of size |D| = N,.
Surprisingly, but the problem of calculating the cs*- and cs-characters of the spaces
aD is not trivial and the definitive answer is known only under the Generalized
Continuum Hypothesis. First we note that the cardinals cs}(aD) and csy(aD)
admit an interesting interpretation which will be used for their calculation.

Proposition 8. Let D be an infinite discrete space. Then

(1) csy(aD) = min{w(X) : X is a (regular zero-dimensional) topological space
of size | X| = |D| containing non no-trivial convergent sequence};

(2) csy(aD) = min{w(X) : X is a (regular zero-dimensional) topological space
of size | X| = |D| containing no countable non-discrete subspace}.

For a cardinal k£ we put logx = min{\ : & < 2*} and cof ([x]=%) be the smallest
size of a collection C C [k]=“ such that each at most countable subset S C & lies in
some element C' € C. Observe that cof([k]=%) < k“ but sometimes the inequality
can be strict: 1 = cof([Rg]=¥) < Ry and X; = cof ([X;]=%) < R}°. In the following
proposition we collect all the information on the cardinals cs} (aD) and csy(aD)

we know.

Proposition 9. Let D be an uncountable discrete space. Then

(1) Ry -log|D| < est(aD) < csy (D) < minf{|D|, 2% - cof([log | D[]<*)} while
sby(aD) = x(aD) = |D|;
(2) csi(aD) = csy(aD) =R -log|D| under GCH.

In spite of numerous efforts some annoying problems concerning cs*- and cs-
characters still rest open.

Problem 1. Is there a (necessarily consistent) ezample of a space X with cs} (X) #
csy(X)? In particular, is cs}(ac) # csy(ac) in some model of ZFC?
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In light of Proposition 8 it is natural to consider the following three cardinal
characteristics of the continuum which seem to be new:

w; = min{w(X) : X is a topological space of size |X| = ¢ containing no
non-trivial convergent sequence};
wo = min{w(X) : X is a topological space of size |X| = ¢ containing no
non-discrete countable subspace};
w3 = min{w(X) : X is a P-space of size | X| = c}.
As expected, a P-space is a Ti-space whose any Gg-subset is open. Observe
that o = cs;(ac) while wy = cs, (ac). It is clear that Xy < 13 < wy < w3 < ¢

and hence the cardinals to;, i = 1,2, 3, fall into the category of small uncountable
cardinals, see [Val.

Problem 2. Are the cardinals vo;, 1 = 1,2,3, equal to (or can be estimated via)
some known small uncountable cardinals considered in Set Theory? Is ro; < wy <
tog in some model of ZFC?

Our next question concerns the assumption b = ¢ in Theorem 5.

Problem 3. Is there a ZFC-example of a sequential space X with sby (X) < ¢(X)
or at least cs} (X) < (X)?

Propositions 1 and 5 imply that sb, (X) € {1,Xo} U [0,¢] for any c-sequential
topological space X with countable cs*-character. On the other hand, for a se-
quential topological group G with countable cs*-character we have a more precise
estimate sby (G) € {1, N, 0}.

Problem 4. Is sb,(X) € {1,R,0} for any sequential space X with countable
cs*-character?

As we saw in Proposition 7, x(X) < Ng for any Fréchet-Urysohn compactum X
with csy (X) < No.

Problem 5. Is sb,(X) < R for any sequential (scattered) compactum X with
csy (X) < Rg?

Now we pass to proofs of our results.

ON SEQUENCE TREES IN TOPOLOGICAL GROUPS

Our basic instrument in proofs of main results is the concept of a sequence tree.
As usual, under a tree we understand a partially ordered subset (T, <) such that
for each t € T the set | t = {7 € T : 0 < t} is well-ordered by the order <. Given
an element ¢t € T' let 1 ¢ = {7 € T : 7 > t} and succ(t) = min(1 ¢ \ {¢t}) be the set
of successors of ¢t in T. A maximal linearly ordered subset of a tree T is called a
branch of T. By maxT we denote the set of maximal elements of the tree T'.

Definition 1. Under a sequence tree in a topological space X we understand a tree
(T, <) such that
o T CX,;
e T has no infinite branch;
e for each ¢t ¢ max T the set min(1 ¢\ {¢}) of successors of ¢ is countable and
converges to t.
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Saying that a subset S of a topological space X converges to a point ¢t € X we
mean that for each neighborhood U C X of ¢ the set S\ U is finite.

The following lemma is well-known and can be easily proven by transfinite in-
duction (on the ordinal s(a, A) = min{a : a € A} for a subset A of a sequential
space and a point a € A from its closure)

Lemma 1. A point a € X of a sequential topological space X belongs to the closure
of a subset A C X if and only if there is a sequence tree T C X with minT = {a}
and maxT C A.

For subsets A, B of a group G let A= = {27! : 2 € A} C G be the inversion
of Ain G and AB ={ay:z € A, y € B} C G be the product of A, B in G. The
following two lemmas will be used in the proof of Theorem 1.

Lemma 2. A sequential subspace F' C X of a topological group G is first countable
if the subspace F~'F C G has countable sb-character at the unit e of the group G.

Proof. Our proof starts with the observation that it is sufficient to consider the
case e € F' and prove that F' has countable character at e.

Let {S, : n € w} be a decreasing sb-network at e in F~!'F. First we show that
for every n € w there exists m > n such that S2, N (F~'F) C S,,. Otherwise, for
every m € w there would exist ., Ym € Sy With 2,y € (F~1F)\S,. Taking into
account that lim,, o0 y = limyy—co Ym = €, we get limy, 00 T ym = €. Since S,
is a sequential barrier at e, there is a number m with z,,y., € S,, which contradicts
to the choice of the points x,,, Y.

Now let us show that for all n € w the set S, N F' is a neighborhood of e in F.
Suppose, conversely, that e € clp(F'\ Sy,) for some ng € w.

By Lemma 1 there exists a sequence tree T C F, minT = {e} and maxT C
F\ Sn,- To get a contradiction we shall construct an infinite branch of T. Put
zo = e and let mg be the smallest integer such that S%w NELF C Sy,

By induction, for every i > 1 find a number m; > m;_y with S2 NF~'F C S,,,_,
and a point x; € succ(x;—1) N (zi—15m,;). To show that such a choice is always
possible, it suffices to verify that z;—1 ¢ maxT. It follows from the inductive
construction that ;1 € F N (Spg - Sm,_,) C FNSZ, C Sp, and thus z;_; ¢
max T because maxT C F'\ Sy,.

Therefore we have constructed an infinite branch {x; : i € w} of the sequence
tree T' which is not possible. This contradiction finishes the proof. O

Lemma 3. A sequential az-subspace F' of a topological group G has countable sb-
character provided the subspace F~1F C G has countable cs-character at the unit

e of G.

Proof. Suppose that F' C G is a sequential ar-space with cs, (F71F,e) < X,. We
have to prove that sby (F,z) < Xo for any point z € F. Replacing F by Fz ™', if
necessary, we can assume that z = e is the u