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ABSTRACT. In this paper we introduce and study three new cardinal topologi-
cal invariants called the cs*-, cs-, and sb-characters. The class of topological s-
paces with countable cs*-character is closed under many topological operations
and contains all X-spaces and all spaces with point-countable cs*-network. Our
principal result states that each non-metrizable sequential topological group
with countable cs*-character has countable pseudo-character and contains an
open k-subgroup. This result is specific for topological groups: under Martin
Axiom there exists a sequential topologically homogeneous k. -space X with
No = cs} (X) < ¢(X).

INTRODUCTION

In this paper we introduce and study three new local cardinal invariants of
topological spaces called the sb-character, the cs-character and cs*-character, and
describe the structure of sequential topological groups with countable cs*-character.
All these characters are based on the notion of a network at a point x of a topological
space X, under which we understand a collection N of subsets of X such that for
any neighborhood U C X of z there is an element N € N with z € N C U, see
[Lin].

A subset B of a topological space X is called a sequential barrier at a point
x € X if for any sequence (x,)ne, C X convergent to x, there is m € w such that
x, € B for all n > m, see [Lin]. It is clear that each neighborhood of a point z € X
is a sequential barrier for x while the converse in true for Fréchet-Urysohn spaces.

Under a sb-network at a point x of a topological space X we shall understand
a network at x consisting of sequential barriers at . In other words, a collection
N of subsets of X is a sb-network at = if for any neighborhood U of = there is an
element N of A such that for any sequence (x,) C X convergent to = the set N
contains almost all elements of (z,). Changing two quantifiers in this definition by
their places we get a definition of a cs-network at x.

Namely, we define a family N of subsets of a topological space X to be a cs-
network (resp. a cs*-network) at a point x € X if for any neighborhood U C X of
x and any sequence (z,) C X convergent to x there is an element N € N such that
N C U and N contains almost all (resp. infinitely many) members of the sequence
(z,). A family N of subsets of a topological space X is called a cs-network (resp.
cs*-network) if it is a cs-network (resp. cs*-network) at each point = € X, see [Na].

The smallest size |N| of an sb-network (resp. cs-network, cs*-network) N at
a point € X is called the sb-character (resp. cs-character, cs*-character) of
X at the point x and is denoted by sb, (X, ) (resp. csy (X, z), cs}(X,z)). The
cardinals sby (X) = sup,cy sby (X, ), cs,(X) = sup,¢ex csy (X, z) and cs}(X) =
sup, ¢ x sy (X, z) are called the sb-character, cs-character and cs*-character of the
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topological space X, respectively. For the empty topological space X = () we put
sby (X) = csy (X) = esp(X) = 1.

In the sequel we shall say that a topological space X has countable sb-character
(resp. cs-, cs™-character) if sby (X) < Vg (resp. csy(X) < Vo, ¢s7(X) < Rg). In
should be mentioned that under different names topological spaces with countable
sb- or cs-character have already occured in topological literature. In particular, a
topological space has countable cs-character if and only if it is ¢sf-countable in
the sense of [Lin]; a (sequential) space X has countable sb-character if and only
if it is universally csf-countable in the sense of [Lin] (if and only if it is weakly
first-countable in the sense of [Ar;] if and only if it is O0-metrizable in the sense
of Nedev [Ne]). From now on, all the topological spaces considered in the paper
are Ty-spaces. At first we consider the interplay between the characters introduced
above.

Proposition 1. Let X be a topological space. Then

(1) esy(X) < sy (X) < sby (X) < x(X);

(2) x(X) =sby(X) if X is Fréchet-Urysohn;

(3) esy(X) < Ng iff ey (X) < N iff sby (X) < Rg iff es}(X) =1 iff es (X) =1
iff sby (X) =1 iff each convergent sequence in X is trivial;

(4) sby (X) < 2559,

(5) csy (X) < est(X) - sup{|[R]S¥] : & < es2(X)} < (es3(X))™ where

(K]S9 = {A C k:|A] < R}

Here “iff” is an abbreviation for “if and only if”. The Arens’ space S> and
the sequential fan S, give us simple examples distinguishing between some of
the characters considered above. We recall that the Arens’ space S is the set
{(0,0),(%,0),(+,-1) : n,m € N} C R? carrying the strongest topology inducing
the original planar topology on the convergent sequences Cy = {(0,0), (%, 0):ne€
N} and C,, = {(£,0),(%,-1) : m € N}, n € N. The quotient space S,, = S2/C
obtained from the Arens’ space Sy by identifying the points of the sequence Cj is
called the sequential fan, see [Lin]. The sequential fan S, is the simplest example
of a non-metrizable Fréchet-Urysohn space while S5 is the simplest example of a
sequential space which is not Fréchet-Urysohn.

We recall that a topological space X is sequential if a subset A C X if closed if
and only if A is sequentially closed in the sense that A contain the limit point of
any sequence (a,) C A, convergent in X. A topological space X is Fréchet-Urysohn
if for any cluster point @ € X of a subset A C X there is a sequence (a,) C A,
convergent to a.

Observe that Ng = cs}(S2) = 5,(S2) = sby(S2) < x(S2) = 0 while Ry =
sy (Sw) = e8y(Sw) < sby(Sw) = x(S,) = 0. Here 0 is the well-known in Set
Theory small uncountable cardinal equal to the cofinality of the partially ordered
set N¥ endowed with the natural partial order: (z,) < (y,) iff z,, < y, for all n, see
[Va]. Besides d, we will need two other small cardinals: b defined as the smallest
size of a subset of uncountable cofinality in (N“| <), and p equal to the smallest size
|F| of a family of infinite subsets of w closed under finite intersections and having
no infinite pseudo-intersection in the sense that there is no infinite subset I C w
such that the complement I \ F' is finite for any F' € F, see [Va], [vD]. It is known
that Xy < p < b <0 < ¢ where ¢ stands for the size of continuum. Martin Axiom
implies p = b = 0 = ¢, [MS]. On the other hand, for any uncountable regular
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cardinals A < k there is a model of ZFC with p = b =0 = X and ¢ = &, see [vD,
5.1].

Unlike to the cardinal invariants cs,, sb, and x which can be distinguished on
simple spaces, the difference between the cardinal invariants cs, and csy is more
subtle: they cannot be distinguished in some models of Set Theory!

Proposition 2. Let X be a topological space. Then cs}(X) = csy(X) provided one
of the following conditions is satisfied:

(1) es}(X) <p;

(2) k% < cs3(X) for any cardinal k < cs}(X);

(3) p=c and \* < k for any cardinals A < k > ¢;

(4) p = ¢ (this is so under MA) and X is countable;

(5) the Generalized Continuum Hypothesis holds.

Unlike to the usual character, the cs*-, cs-, and sb-characters behave nicely with
respect to many countable topological operations.

Among such operation there are: the Tychonov product, the box-product, pro-
ducing a sequentially homeomorphic copy, taking image under a sequentially open
map, and forming inductive topologies.

As usual, under the box-product O;c7X; of topological spaces X;, i € I, we
understand the Cartesian product [],.; X; endowed with the box-product topology
generated by the base consisting of products [];.; U; where each U; is open in X;.
In contrast, by [[;c; Xi we denote the usual Cartesian product of the spaces Xj,
endowed with the Tychonov product topology.

We say that a topological space X carries the inductive topology with respect to a
cover C of X if a subset F' C X is closed in X if and only if the intersection F'NC is
closed in C for each element C € C. For a cover C of X let ord(C) = sup,¢x ord(C, z)
where ord(C,z) = |{C € C: z € C'}|. A topological space X carrying the inductive
topology with respect to a countable cover by closed metrizable (resp. compact,
compact metrizable) subspaces is called an M, -space (resp. a k,-space, MK, -
space).

A function f: X — Y between topological spaces is called sequentially continu-
ous if for any convergent sequence (z,) in X the sequence (f(x,)) is convergent in
Y to f(limzy,); f is called a sequential homeomorphism if f is bijective and both
f and f~! are sequentially continuous. Topological spaces X,Y are defined to be
sequentially homeomorphic if there is a sequential homeomorphism A : X — Y.
Observe that two spaces are sequentially homeomorphic if and only if their se-
quential coreflexions are homeomorphic. Under the sequential coreflexion o X of a
topological space X we understand X endowed with the topology consisting of all
sequentially open subsets of X (a subset U of X is sequentially open if its comple-
ment is sequentially closed in X; equivalently U is a sequential barrier at each point
x € U). Note that the identity map id : X — X is continuous while its inverse is
sequentially continuous, see [Lin].

A map f: X = Y is sequentially open if for any point o € X and a sequence
S C Y convergent to f(xo) there is a sequence T' C X convergent to xo and such
that f(T) C S. Observe that a bijective map f is sequentially open if its inverse
f~! is sequentially continuous.

The following technical Proposition is an easy consequence of the corresponding
definitions.
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Proposition 3. (1) If X is a subspace of a topological space Y, then cs} (X) <
sy (Y), ey (X) < esy(Y) and sby (X) <sb(Y).
(2) If f: X = Y is a surjective continuous sequentially open map between
topological spaces, then csy (Y) < csy(X) and sby(Y) < sby (X).
(3) If f: X = Y is a surjective sequentially continuous sequentially open
map between topological spaces, then min{cs} (Y),N;} < min{cs} (X),N;},
min{cs, (Y), N1} < min{cs, (X), N1}, and min{sb, (Y"),R; } < min{sb, (X),

N
(4) If X,Y are sequentially homeomorphic topological spaces, then min{cs} (X), R

min{csy (X), Ny} = min{cs, (V),®;} = min{cs} (Y), R}, and min{sb, (Y), N, } =

min{sb, (X),R; }.
(5) min{sb, (X), X1} = min{sh, (¢X), N} <sb, (6 X) > sb,(X) and

sy (X) < esy(0X) > min{esy (0X), N, } = min{cs, (X), ¥} = min{es) (X), Ny} =

min{cs} (0.X), Ry} < csy(0X) > csy(X) for any topological space X.

(6) If X = [l;cq Xi is the Tychonov product of topological spaces X;, i €
Z, then csy(X) < Y ez esy(Xi), esy(X) < Dz o8y (Xi) and sby(X) <
ez Sbx (Xi)-

(7) If X = O;ezX; is the boz-product of topological spaces X;, i € I, then
es}(X) <3 ez esi(Xs) and esy (X) < 37ic7 o5y (Xi).

(8) If a topological space X carries the inductive topology with respect to a cover
C of X, then csy (X) < ord(C) - supcec csy (C).

(9) If a topological space X carries the inductive topology with respect to a
point-countable cover C of X, then csy (X) < suppee csy(C).

(10) If a topological space X carries the inductive topology with respect to a
point-finite cover C of X, then sby (X) < supcece sby (C).

Since each first-countable space has countable cs*-character, it is natural to
consider the class of topological spaces with countable cs*-character as a class of
generalized metric spaces. However this class contains very non-metrizable spaces
like AN, the Stone-Cech compactification of the discrete space of positive integers.
The reason is that SN contains no non-trivial convergent sequence. To avoid such
pathologies we shall restrict ourselves by sequential spaces. Observe that a topo-
logical space is sequential provided X carries the inductive topology with respect
to a cover by sequential subspaces. In particular, each M,-space is sequential
and has countable cs*-character. Our principal result states that for topological
groups the converse is also true. Under an M, -group (resp. MK, -group) we un-
derstand a topological group whose underlying topological space is an M-space
(resp. MK, -space).

Theorem 1. Each sequential topological group G with countable cs*-character is
an M, -group. More precisely, either G is metrizable or else G contains an open
MK, -subgroup H and is homeomorphic to the product H x D for some discrete
space D.

For M,-groups the second part of this theorem was proven in [Ba;]. Theorem 1
has many interesting corollaries.

At first we show that for sequential topological groups with countable cs*-
character many important cardinal invariants are countable, coincide or take some
fixed values. Let us remind some definitions, see [En;]. For a topological space X
recall that
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e the pseudocharacter ¥(X) is the smallest cardinal x such that each one-
point set {x} C X can be written as the intersection {x} = N of some
family U of open subsets of X with |U| < &;

e the cellularity ¢(X) is the smallest cardinal x such that X contains no family
U of size |U| > & consisting of non-empty pairwise disjoint open subsets;

e the Lindeldf number I(X) is the smallest cardinal x such that each open
cover of X contains a subcover of size < k;

e the density d(X) is the smallest size of a dense subset of X;

e the tightness t(X) is the smallest cardinal x such that for any subset A C X
and a point a € A from its closure there is a subset B C A of size |B| < k
with a € B;

e the extent e(X) is the smallest cardinal x such that X contains no closed
discrete subspace of size > k;

e the compact covering number kc(X) is the smallest size of a cover of X by
compact subsets;

e the weight w(X) is the smallest size of a base of the topology of X;

e the network weight nw(X) is the smallest size | V| of a topological network
for X (a family N of subsets of X is a topological network if for any open
set U C X and any point « € U there is N € A/ with z € N C U);

o the k-network weight knw(X) is the smallest size |N| of a k-network for
X (a family A of subsets of X is a k-network if for any open set U C X
and any compact subset K C U there is a finite subfamily M C A with
KcuMcU).

For each topological space X these cardinal invariants relate as follows:
max{c(X),l(X),e(X)} < nw(X) < knw(X) < w(X).

For metrizable spaces all of them are equal, see [Eng, 4.1.15].

In the class of k-spaces there is another cardinal invariant, the k-ness introduced
by E. van Douwen, see [vD, §8]. We remind that a topological space X is called
a k-space if it carries the inductive topology with respect to the cover of X by all
compact subsets. It is clear that each sequential space is a k-space. The k-ness
kE(X) of a k-space is the smallest size || of a cover K of X by compact subsets such
that X carries the inductive topology with respect to the cover K. It is interesting
to notice that k(N¥) = 0 while k(Q) = b, see [vD]. Proposition 3(8) implies that
sy (X) < E(X)-9(X) > ke(X) for each k-space X. Observe also that a topological
space X is a k,-space if and only if X is a k-space with k(X) < R,.

Besides cardinal invariants we shall consider an ordinal invariant, called the
sequential order. Under the sequential closure A of a subset A of a topological
space X we understand the set of all limit point of sequences (a,) C A, convergent
in X. Given an ordinal o define the a-th sequential closure A(®) of A by transfinite
induction: A(®) = U5<a(A(B))(1)- Under the sequential order so(X) of a topological
space X we understand the smallest ordinal a such that A(*tD = A for any
subset A C X. Observe that a topological space X is Fréchet-Urysohn if and only
if so(X) < 1; X is sequential if and only if clx (A) = A®°(X)) for any subset A C X.

Besides purely topological invariants we shall also consider a cardinal invariant,
specific for topological groups. For a topological group G let ib(G), the boundedness
index of G be the smallest cardinal & such that for any nonempty open set U C G
there is a subset F' C G of size |F| < &k such that G = F - U. It is known that
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ib(G) < min{c(G@),(G),e(G)} and w(G) = ib(G) - x(G) for each topological group,
see [Tk].

Theorem 2. Fach sequential topological group G with countable cs*-character has
the following properties: (G) < N, sby (G) = x(G) € {1,R,0}, ib(G) = ¢(G) =
d(G) =1(G) = e(G) = nw(G) = knw(G), and so(G) € {1,w;}.

We shall derive from Theorems 1 and 2 an unexpected metrization theorem for
topological groups. But first we need to remind the definitions of some of a;-spaces,
i =1,...,6 introduced by A.V. Arkhangelski in [Ars], [Ars]. We also define a wider
class of az-spaces.

A topological space X is called

e an «ap-space if for any sequences S, C X, n € w, convergent to a point
x € X there is a sequence S C X convergent to = and such that S, \ S is
finite for all n;

e an ay-space if for any sequences S, C X, n € w, convergent to a point
x € X there is a sequence S C X convergent to z and such that S, NS # (
for infinitely many sequences Sy;

e an az-space if for any sequences S, C X, n € w, convergent to a point
x € X there is a sequence S C X convergent to some point y of X and
such that S, NS # @ for infinitely many sequences Sy;

Under a sequence converging to a point x of a topological space X we understand
any countable infinite subset S of X such that S\ U if finite for any neighborhood
U of z. Each ay-space is ay and each a4-space is a7. Quite often az-spaces are ay,
see Lemma 7. Observe also that each sequentially compact space is a7. It can be
shown that a topological space X is an az-space if and only if it contains no closed
copy of the sequential fan S, in its sequential coreflexion o X. If X is an ay-space,
then ¢ X contains no topological copy of S, .

We remind that a topological group G is Weil complete if it is complete in
its left (equivalently, right) uniformity. According to [PZ, 4.1.6], each k,-group
is Weil complete. The following metrization theorem can be easily derived from
Theorems 1, 2 and elementary properties of MK, -groups.

Theorem 3. A sequential topological group G with countable cs*-character is metriz-
able if one of the following conditions is satisfied:

(1) s ( ) <wi;

(2) sby(G) <0;

(3) i ( ) < k(G);

(4) G is Fréchet-Urysohn;

(5) G is an az-space;

(6) G contains no closed copy of S, or Sa;
(7) G is not Weil complete;

(8) G is Baire;

(9) (@) < |G| < 2.

According to Theorem 1, each sequential topological group with countable cs*-
character is an M,,-group. The first author has proved in [Bag] that the topological
structure of a non-metrizable punctiform M,,-group is completely determined by
its density and the compact scatteredness rank.
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Recall that a topological space X is punctiform if X contains no compact con-
nected subspace containing more than one point, see [Ens, 1.4.3]. In particular,
each zero-dimensional space is punctiform.

Next, we remind the definition of the scatteredness height. Given a topological
space X let X(;) C X denote the set of all non-isolated points of X. For each
ordinal « define the a-th derived set X(,) of X by transfinite induction: X, =
MNs<a(X(s)))- Under the scatteredness height sch(X) of X we understand the
smallest ordinal a such that X(,11) = X(4). A topological space X is scattered if
X(a) = 0 for some ordinal a.. Under the compact scatteredness rank of a topological
space X we understand the ordinal scr(X) = sup{sch(K) : K is a scattered compact
subspace of X }.

Theorem 4. Two non-metrizable sequential punctiform topological groups G, H
with countable cs*-character are homeomorphic if and only if d(G) = d(H) and
scr(G) = scr(H).

This theorem follows from Theorem 1 and “Main Theorem” of [Bag] asserting
that two non-metrizable punctiform M,-groups G, H are homeomorphic if and
only if d(G) = d(H) and scr(G) = scr(H). For countable k,-groups this fact was
proven by E.Zelenyuk [Ze;].

The topological classification of non-metrizable sequential locally convex spaces
with countable cs*-character is even more simple. Any such a space is homeomor-
phic either to R* or to R* x () where @) = [0,1]“ is the Hilbert cube and R* is a
linear space of countable algebraic dimension, carrying the strongest locally convex
topology. It is well-known that this topology is inductive with respect to the cov-
er of R® by finite-dimensional linear subspaces. The topological characterization
of the spaces R* and R* x @) was given in [Sa]. In [Bas] it was shown that each
infinite-dimensional locally convex MK, -space is homeomorphic to R*® or R* x Q.
This result together with Theorem 1 implies the following classification

Corollary 1. FEach non-metrizable sequential locally convex space with countable
cs*-character is homeomorphic to R* or R® x Q.

As we saw in Theorem 2, each sequential topological group with countable cs*-
character has countable pseudocharacter. The proof of this result is based on
the fact that compact subsets of sequential topological groups with countable cs*-
character are first countable. This naturally leads to a conjecture that compact
spaces with countable cs*-character are first countable. Surprisingly, but this con-
jecture is false: assuming the Continuum Hypothesis N. Yakovlev [Ya] has con-
structed a scattered sequential compactum which has countable sb-character but
fails to be first countable. In [Ny,] P.Nyikos pointed out that the Yakovlev con-
struction still can be carried under the assumption b = ¢. More precisely, we have

Proposition 4. Under b = ¢ there is a regqular locally compact locally count-
able space Y whose one-point compactification Y is sequential and satisfies Rg =
sby (aY) < ¢(aY) =c.

We shall use the above proposition to construct examples of topologically ho-
mogeneous spaces with countable cs-character and uncountable pseudocharacter.
This shows that Theorem 2 is specific for topological groups and cannot be gener-
alized to topologically homogeneous spaces. We remind that a topological space X
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is topologically homogeneous if for any points x,y € X there is a homeomorphism
h: X — X with h(z) = y.

Theorem 5.

(1) There is a topologically homogeneous countable regular k,-space X1 with
Ro = sby (X71) < x(X1) =0 and so(X1) = w;

(2) Under b = ¢ there is a sequential topologically homogeneous zero-dimensional
k. -space Xo with Nog = cs,(X2) < ¥(X2) = ¢;

(3) Under b = ¢ there is a sequential topologically homogeneous totally discon-
nected space Xz with Rg = sb, (X3) < ¢(X3) =¢.

We remind that a space X is totally disconnected if for any distinct points z,y €
X there is a continuous function f: X — {0, 1} such that f(z) # f(y), see [Ens].

Remark 1. The space X; from Theorem 5(1) is the well-known Arkhangelski-
Franklin example [AF] (see also [Co, 10.1]) of a countable topologically homoge-
neous k,-space, homeomorphic to no topological group (this also follows from The-
orem 2). On the other hand, according to [Zes], each topologically homogeneous
countable regular space (in particular, X;) is homeomorphic to a quasitopological
group, that is a topological space endowed with a separately continuous group oper-
ation with continuous inversion. This shows that Theorem 2 cannot be generalized
onto quasitopological groups (see however [Zd] for generalizations of Theorems 1
and 2 to some other topologo-algebraic structures).

Next, we find conditions under which a space with countable cs*-character is first-
countable or has countable sb-character. Following [Ars] we define a topological
space X to be c-sequential if for each closed subspace Y C X and each non-isolated
point y of Y there is a sequence (y,) C Y \ {y} convergent to y. It is clear that
each sequential space is ¢-sequential. A point z of a topological space X is called
reqular G5 if {x} = NB for some countable family B of closed neighborhood of z in
X, see [Lin].

First we characterize spaces with countable sb-character (the first three items
of this characterization were proved by Lin [Lin, 3.13] in terms of (universally)
cs f-countable spaces).

Proposition 5. For a Hausdorff space X the following conditions are equivalent:

(1) X has countable sb-character;
(2) X is an a;-space with countable cs*-character;
(3) X is an as-space with countable cs*-character;
(4) esy(X) < Ng and sby (X) < p.
Moreover, if X is c-sequential and each point of X is reqular G, then the conditions
(1)-(4) are equivalent to:
(5) cs}(X) <Ny and sb, (X) <.

Next, we give a characterization of first-countable spaces in the same spirit (the
equivalences (1) & (2) < (5) were proved by Lin [Lin, 2.8]).
Proposition 6. For a Hausdorff space X with countable cs*-character the following
conditions are equivalent:
(1) X is first-countable;
(2) X is Fréchet-Urysohn and has countable sb-character;
(3) X is Fréchet-Urysohn az-space;
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(4) x(X) <p and X has countable tightness.
Moreover, if each point of X is reqular G5, then the conditions (1)-(4) are equivalent
to:
(5) X is a sequential space containing no closed copy of Sa or S, ;
(6) X is a sequential space with x(X) < 0.

For Fréchet-Urysohn (resp. dyadic) compacta the countability of the cs*-character
is equivalent to the first countability (resp. the metrizability). We remind that a
compact Hausdorff space X is called dyadic if X is a continuous image of the Cantor
discontinuum {0, 1}" for some cardinal .

Proposition 7.

(1) A Fréchet-Urysohn countably compact space is first-countable if and only if
it has countable cs*-character.

(2) A dyadic compactum is metrizable if and only if its has countable cs*-
character.

In light of Proposition 7(1) one can suggest that cs} (X) = x(X) for any compact
Fréchet-Urysohn space X. However that is not true: under CH, cs, (aD) # x(aD)
for the one-point compactification aD of a discrete space D of size |D| = N,.
Surprisingly, but the problem of calculating the cs*- and cs-characters of the spaces
aD is not trivial and the definitive answer is known only under the Generalized
Continuum Hypothesis. First we note that the cardinals cs}(aD) and csy(aD)
admit an interesting interpretation which will be used for their calculation.

Proposition 8. Let D be an infinite discrete space. Then

(1) csy(aD) = min{w(X) : X is a (regular zero-dimensional) topological space
of size | X| = |D| containing non no-trivial convergent sequence};

(2) csy(aD) = min{w(X) : X is a (regular zero-dimensional) topological space
of size | X| = |D| containing no countable non-discrete subspace}.

For a cardinal k£ we put logx = min{\ : & < 2*} and cof ([x]=%) be the smallest
size of a collection C C [k]=“ such that each at most countable subset S C & lies in
some element C' € C. Observe that cof([k]=%) < k“ but sometimes the inequality
can be strict: 1 = cof([Rg]=¥) < Ry and X; = cof ([X;]=%) < R}°. In the following
proposition we collect all the information on the cardinals cs} (aD) and csy(aD)

we know.

Proposition 9. Let D be an uncountable discrete space. Then

(1) Ry -log|D| < est(aD) < csy (D) < minf{|D|, 2% - cof([log | D[]<*)} while
sby(aD) = x(aD) = |D|;
(2) csi(aD) = csy(aD) =R -log|D| under GCH.

In spite of numerous efforts some annoying problems concerning cs*- and cs-
characters still rest open.

Problem 1. Is there a (necessarily consistent) ezample of a space X with cs} (X) #
csy(X)? In particular, is cs}(ac) # csy(ac) in some model of ZFC?
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In light of Proposition 8 it is natural to consider the following three cardinal
characteristics of the continuum which seem to be new:

w; = min{w(X) : X is a topological space of size |X| = ¢ containing no
non-trivial convergent sequence};
wo = min{w(X) : X is a topological space of size |X| = ¢ containing no
non-discrete countable subspace};
w3 = min{w(X) : X is a P-space of size | X| = c}.
As expected, a P-space is a Ti-space whose any Gg-subset is open. Observe
that o = cs;(ac) while wy = cs, (ac). It is clear that Xy < 13 < wy < w3 < ¢

and hence the cardinals to;, i = 1,2, 3, fall into the category of small uncountable
cardinals, see [Val.

Problem 2. Are the cardinals vo;, 1 = 1,2,3, equal to (or can be estimated via)
some known small uncountable cardinals considered in Set Theory? Is ro; < wy <
tog in some model of ZFC?

Our next question concerns the assumption b = ¢ in Theorem 5.

Problem 3. Is there a ZFC-example of a sequential space X with sby (X) < ¢(X)
or at least cs} (X) < (X)?

Propositions 1 and 5 imply that sb, (X) € {1,Xo} U [0,¢] for any c-sequential
topological space X with countable cs*-character. On the other hand, for a se-
quential topological group G with countable cs*-character we have a more precise
estimate sby (G) € {1, N, 0}.

Problem 4. Is sb,(X) € {1,R,0} for any sequential space X with countable
cs*-character?

As we saw in Proposition 7, x(X) < Ng for any Fréchet-Urysohn compactum X
with csy (X) < No.

Problem 5. Is sb,(X) < R for any sequential (scattered) compactum X with
csy (X) < Rg?

Now we pass to proofs of our results.

ON SEQUENCE TREES IN TOPOLOGICAL GROUPS

Our basic instrument in proofs of main results is the concept of a sequence tree.
As usual, under a tree we understand a partially ordered subset (T, <) such that
for each t € T the set | t = {7 € T : 0 < t} is well-ordered by the order <. Given
an element ¢t € T' let 1 ¢ = {7 € T : 7 > t} and succ(t) = min(1 ¢ \ {¢t}) be the set
of successors of ¢t in T. A maximal linearly ordered subset of a tree T is called a
branch of T. By maxT we denote the set of maximal elements of the tree T'.

Definition 1. Under a sequence tree in a topological space X we understand a tree
(T, <) such that
o T CX,;
e T has no infinite branch;
e for each ¢t ¢ max T the set min(1 ¢\ {¢}) of successors of ¢ is countable and
converges to t.
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Saying that a subset S of a topological space X converges to a point ¢t € X we
mean that for each neighborhood U C X of ¢ the set S\ U is finite.

The following lemma is well-known and can be easily proven by transfinite in-
duction (on the ordinal s(a, A) = min{a : a € A} for a subset A of a sequential
space and a point a € A from its closure)

Lemma 1. A point a € X of a sequential topological space X belongs to the closure
of a subset A C X if and only if there is a sequence tree T C X with minT = {a}
and maxT C A.

For subsets A, B of a group G let A= = {27! : 2 € A} C G be the inversion
of Ain G and AB ={ay:z € A, y € B} C G be the product of A, B in G. The
following two lemmas will be used in the proof of Theorem 1.

Lemma 2. A sequential subspace F' C X of a topological group G is first countable
if the subspace F~'F C G has countable sb-character at the unit e of the group G.

Proof. Our proof starts with the observation that it is sufficient to consider the
case e € F' and prove that F' has countable character at e.

Let {S, : n € w} be a decreasing sb-network at e in F~!'F. First we show that
for every n € w there exists m > n such that S2, N (F~'F) C S,,. Otherwise, for
every m € w there would exist ., Ym € Sy With 2,y € (F~1F)\S,. Taking into
account that lim,, o0 y = limyy—co Ym = €, we get limy, 00 T ym = €. Since S,
is a sequential barrier at e, there is a number m with z,,y., € S,, which contradicts
to the choice of the points x,,, Y.

Now let us show that for all n € w the set S, N F' is a neighborhood of e in F.
Suppose, conversely, that e € clp(F'\ Sy,) for some ng € w.

By Lemma 1 there exists a sequence tree T C F, minT = {e} and maxT C
F\ Sn,- To get a contradiction we shall construct an infinite branch of T. Put
zo = e and let mg be the smallest integer such that S%w NELF C Sy,

By induction, for every i > 1 find a number m; > m;_y with S2 NF~'F C S,,,_,
and a point x; € succ(x;—1) N (zi—15m,;). To show that such a choice is always
possible, it suffices to verify that z;—1 ¢ maxT. It follows from the inductive
construction that ;1 € F N (Spg - Sm,_,) C FNSZ, C Sp, and thus z;_; ¢
max T because maxT C F'\ Sy,.

Therefore we have constructed an infinite branch {x; : i € w} of the sequence
tree T' which is not possible. This contradiction finishes the proof. O

Lemma 3. A sequential az-subspace F' of a topological group G has countable sb-
character provided the subspace F~1F C G has countable cs-character at the unit

e of G.

Proof. Suppose that F' C G is a sequential ar-space with cs, (F71F,e) < X,. We
have to prove that sby (F,z) < Xo for any point z € F. Replacing F by Fz ™', if
necessary, we can assume that z = e is the unit of the group G. Fix a countable
family A of subsets of G closed under group products in G, finite unions and finite
intersections, and such that F~'F € Aand A|[F'F={AN(F'F):Ae A}isa
cs-network at e in F~1F. We claim that the collection A|F = {ANF: A€ A} is
a sbh-network at e in F'.

Assuming the converse, we would find an open neighborhood U C G of e such
that for any element A € A with AN F C U the set AN F fails to be a sequential
barrier at e in F.
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Let /' ={AeA: AC FnU} ={A, :n € w} and B, = U<, Ar. Let
m_1; = 0 and U_; C U be any closed neighborhood of e in G. By induction, for
every k € w find a number my > my_1, a closed neighborhood Uy C Ui_; of e
in G, and a sequence (xy,;)iec, convergent to e so that the following conditions are
satisfied:

(1) {xk,i RS U)} CUg-1N F \ Bmk—l;

(ii) the set Fy, = {zp,;:n <k, i € w}\ By, is finite;

(iii) Up N (Fr U{z;; 0,5 <k}) =0 and U} C Up_;.

The last condition implies that UgU; --- Uy C U for every k > 0.

Consider the subspace X = {x; : k,i € w} of F and observe that it is discrete
(in itself). Denote by X the closure of X in F' and observe that X \ X is closed
in F. We claim that e is an isolated point of X \ X. Assuming the converse and
applying Lemma 1 we would find a sequence tree T C X such that min T = {e},
maxT C X, and succ(e) C X \ X.

By induction, construct a (finite) branch (¢;)i<n+1 of the tree T' and a sequence
{C; 11 < n} of elements of the family A such that to = e, |succ(t;) \ t;C;| < Ro and
C; cUN(F7'F), t;y, € succ(t;) Nt;C;, for each i < n. Note that the infinite set
o = succ(t,) Nt,Cy C X converges to the point ¢, # e.

On the other hand, ¢ C ¢,C,, C t,_1Cp_1C,, C --- C tcCo---C,, CUy---U, C
U. It follows from our assumption on A that Cy---Cy, € A and thus (Cp---Cy,) N
F C By, for some k. Consequently, c C X N B,,, and 0 C {z;; : j <k, i € w}
by the item (i) of the construction of X. Since e is a unique cluster point of the
set {;; : j < k, i € w}, the sequence o cannot converge to t, # e, which is a
contradiction.

Thus e is an isolated point of X \ X and consequently, there is a closed neigh-
borhood W of e in G such that the set V = ({e} UX)NW is closed in F.

For every n € w consider the sequence S, = W N {z,; : i € w} convergent to e.
Since F' is an ay-space, there is a convergent sequence S C F such that SN.S,, # 0
for infinitely many sequences S,,. Taking into account that V' is a closed subspace
of F with |V N S| = Ry, we conclude that the limit point lim S of S belongs to
the set V. Moreover, we can assume that S C V. Since the space X is discrete,
limS € V\ X = {e}. Thus the sequence S converges to e. Since A’ is a cs-network
at e in F, there is a number n € w such that A,, contains almost all members of
the sequence S. Since S, N (Sy U A,) = 0 for m > k > n, the sequence S cannot
meet infinitely many sequences S,,. But this contradicts to the choice of S. O

Following [vD, §8] by L we denote the countable subspace of the plane R?:
L = {(0,0),(%,-L) :n,m e N} Cc R.

n’ nm

The space L is locally compact at each point except for (0,0). Moreover, according
to Lemma 8.3 of [vD], a first countable space X contains a closed topological copy
of the space L if and only if X is not locally compact.

The following important lemma was proven in [Ba, ] for normal sequential groups.

Lemma 4. If a sequential topological group G contains a closed copy of the space
L, then G is an ar-space.

Proof. Let h: L — G be a closed embedding and let xg = h(0,0), Tpm = h(%, =)

n’nnm
for n,m € N. To show that G is an ar-space, for every n € N fix a sequence
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(Yn,m)men C G, convergent to the unit e of G. Denote by * : G x G — G the group
operation on G.

It is easy to verify that for every n the subspace D,, = {@y,m * Yn,m : m € N} is
closed and discrete in G. Hence there exists k, € N such that zo # Tpn,m * Yn,m for
all m > k,,. Consider the subset

A={Zpm*Ynm:n>0, m>k,}

and using the continuity of the group operation, show that zq ¢ A is a cluster
point of A in G. Consequently, the set A is not closed and by the sequentiality
of G, there is a sequence S C A convergent to a point a ¢ A. Since every space
D, is closed and discrete in GG, we may replace S by a subsequence, and assume
that |S N D,| <1 for every n € N. Consequently, S can be written as S =
{Zni ms * Yni,m; = § € w} for some number sequences (m;) and (n;) with n;11 > n;
for all i. It follows that the sequence (Zn; m;)icw converges to xo and consequently,
the sequence T' = {Yn, m; }icw converges to x5 ' * a. Since T N {Yn;.m }men # O for
every i, we conclude that G is an ay-space. O

Lemma 4 allows us to prove the following unexpected

Lemma 5. A non-metrizable sequential topological group G with countable cs-
character has a countable cs-network at the unit, consisting of closed countably
compact subsets of G.

Proof. Given a non-metrizable sequential group G with countable cs-character we
can apply Lemmas 2—4 to conclude that G contains no closed copy of the space L.
Fix a countable cs-network A at e, closed under finite intersections and consisting
of closed subspaces of G. We claim that the collection C C N of all countably
compact subsets N € N forms a cs-network at e in G.

To show this, fix a neighborhood U C G of e and a sequence (x,) C G convergent
to e. We must find a countably compact set M € A with M C U, containing almost
all points z,,. Let A = {Ay : k € w} be the collection of all elements N C U of A/
containing almost all points z,. Now it suffices to find a number n € w such that
the intersection M = (1, .,, A is countably compact. Suppose to the contrary, that
for every n € w the set ) w<n Ak is not countably compact. Then there exists a
countable closed discrete subspace Ky C Ay with Ky ¥ e. Fix a neighborhood W
of e with Wy N Kg = 0. Since N is a cs-network at e, there exists k; € w such that
Ap, CWh.

It follows from our hypothesis that there is a countable closed discrete subspace
K, C ﬂk< ky Ay, with K7 3 e. Proceeding in this fashion we construct by induction
an increasing number sequence (k,)ne, C w, a sequence (K,)nc, of countable
closed discrete subspaces of G, and a sequence (W), of open neighborhoods of
e such that Ky, C (Vy<p, Ak, Wa N K, = 0, and Ay,,, C W, foralln € w.

It follows from the above construction that {e} UJ, .., Kn is a closed copy of
the space I which is impossible. O

PROOFS OF MAIN RESULTS

Proof of Proposition 1. The first three items can be easily derived from the
corresponding definitions. To prove the fourth item observe that for any cs*-network
N at a point o of a topological space X, the family N/ = {UF : F C N} is an
sb-network at z.
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The proof of fifth item is more tricky. Fix any cs*-network A/ at a point z € X
with |[N] < cs}(X). Let A = cof(JN]) be the cofinality of the cardinal || and
write N = (J, .\ Na where Ny C N3 and |N,| < [N for any ordinals o < 8 < A.
Consider the family M = {UC : C € [N,]S¥, a < A} and observe that |[M| <
A -sup{|[£]=¥| : k < |N|} where [k]=% = {A C k : |A] < No}. It rests to verify that
M is a cs-network at z.

Fix a neighborhood U C X of z and a sequence S C X convergent to z. For
every a < A choose a countable subset C, C N, such that UC, C U and SN(UC,) =
SN(U{N € N, : N C U}). It follows that UC, € M. Let S, = SN (UC,) and
observe that S, C Sg for @« < f < A. To finish the proof it suffices to show that
S\ S, is finite for some o < A. Then the element UC, C U of M will contain
almost all members of the sequence S.

Separately, we shall consider the cases of countable and uncountable A. If X is
uncountable, then it has uncountable cofinality and consequently, the transfinite
sequence (Sq)a<a eventually stabilizes, i.e., there is an ordinal @ < A such that
Sz = S, for all § > a. We claim that the set S\ S, is finite. Otherwise, S\ S,
would be a sequence convergent to z and there would exist an element N € N with
N C U and infinite intersection N N (S \ S,). Find now an ordinal § > a with
N € Nj and observe that SN N C Sz = S, which contradicts to the choice of N.

If X\ is countable and S\ S, is infinite for any a < A, then we can find an
infinite pseudo-intersection T' C S of the decreasing sequence {S \ Sy }a<r. Note
that 7'N S, is finite for every @ < A. Since sequence T' converges to x, there is an
element N € N such that N C U and N NT is infinite. Find oo < X with N € N,
and observe that NN S C S,. Then NNT Cc NNTNS, C TNS, is finite, which
contradicts to the choice of V.

Proof of Proposition 2. Let X be a topological space and fix a point z € X.

(1) Suppose that cs}(X) < p and fix a cs*-network A at the point x such that
|NV] < p. Without loss of generality, we can assume that the family A is closed
under finite unions. We claim that A is a cs-network at z. Assuming the converse
we would find a neighborhood U C X of z and a sequence S C X convergent to z
such that S\ N is infinite for any element N € A with N C U. Since A is closed
under finite unions, the family 7 = {S\ N : N € N, N C U} is closed under finite
intersections. Since |F| < [N < p, the family F has an infinite pseudo-intersection
T c S. Consequently, T N N is finite for any N € N with N C U. But this
contradicts to the facts that T' converges to z and A is a cs*-network at =.

The items (2) and (3) follow from Propositions 1(5) and 2(1). The item (4)
follows from (1,2) and the inequality x(X) < ¢ holding for any countable topological
space X.

Finally, to derive (5) from (3) use the well-known fact that under GCH, A < &
for any infinite cardinals A < k, see [HJ, 9.3.8].

Proof of Theorem 1. Suppose that G is a non-metrizable sequential group with
countable cs*-character. By Proposition 2(1), s, (G) = cs3(G) < Ro.

First we show that each countably compact subspace K of G is first-countable.
The space K, being countably compact in the sequential space G, is sequentially
compact and so are the sets K 'K and (K 'K)™'(K~'K) in G. The sequential
compactness of K~ K implies that it is an az-space. Since cs, (K 1K) 1/(K'K)) <
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sy (G) < Ng we may apply Lemmas 3 and 2 to conclude that the space K 1K has
countable sbh-character and K has countable character.

Next, we show that G contains an open MK ,-subgroup. By Lemma 5, G has a
countable cs-network K consisting of countably compact subsets. Since the group
product of two countably compact subspaces in G is countably compact, we may
assume that /C is closed under finite group products in G. We can also assume that
K is closed under the inversion, i.e. K~! € K for any K € K. Then H = UK
is a subgroup of G. It follows that this subgroup is a sequential barrier at each
of its points, and thus is open-and-closed in G. We claim that the topology on
H is inductive with respect to the cover K. Indeed, consider some U C H such
that U N K is open in K for every K € K. Assuming that U is not open in H
and using the sequentiality of H, we would find a point z € U and a sequence
(n)new C H \ U convergent to . It follows that there are elements Kq, Ky € K
such that z € K; and K> contains almost all members of the sequence (:L'_lxn).
Then the product K = K; K> contains almost all z,, and the set U N K, being an
open neighborhood of z in K, contains almost all members of the sequence (),
which is a contradiction.

As it was proved before each K € K is first-countable, and consequently H has
countable pseudocharacter, being the countable union of first countable subspaces.
Then H admits a continuous metric. Since any continuous metric on a count-
ably compact space generates its original topology, every K € K is a metrizable
compactum, and consequently H is an MK -subgroup of G.

Since H is an open subgroup of G, G is homeomorphic to H x D for some discrete
space D.

Proof of Theorem 2. Suppose G is a non-metrizable sequential topological group
with countable cs*-character. By Theorem 1, G' contains an open MK -subgroup
H and is homeomorphic to the product H x D for some discrete space D . This
implies that G has point-countable k-network. By a result of Shibakov [Shi], each
sequential topological group with point-countable k-network and sequential order
< wy is metrizable. Consequently, so(G) = w;. It is clear that ¢(G) = ¢¥(H) < R,
X(G) = x(H), sby(G) = sby(H) and ib(G) = ¢(G) = d(G) = I(G) = e(G) =
nw(G) = knw(G) = |D] - Ro.

To finish the proof it rests to show that sby(H) = x(H) = 0. It follows from
Lemmas 2 and 3 that the group H, being non-metrizable, is not a7 and thus contains
a copy of the sequential fan S,,. Then d = x(S,,) = sby(S,) < sby(H) < x(H).
To prove that y(H) < 9 we shall apply a result of K. Sakai [Sa] asserting that
the space R x () contains a closed topological copy of each MK -space and the
well-known equality x(R* x @) = x(R*°) = v (following from the fact that R*>
carries the box-product topology, see [Sch, Ch.II, Ex.12]).

Proof of Theorem 5. First we describe two general constructions producing
topologically homogeneous sequential spaces. For a locally compact space Z let
aZ = Z U {oco} be the one-point extension of Z endowed with the topology whose
neighborhood base at co consists of the sets «Z \ K where K is a compact subset
of Z. Thus for a non-compact locally compacts space Z the space aZ is noting else
but the one-point compactification of Z. Denote by 2 = {0,1}* the Cantor cube.
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Consider the subsets
2(Z2) ={(c, (zi)iecw) € 2 x (aZ)” : z; = oo for all but finitely many indices i} and
0(Z) ={(c¢, (zi)icw) € 2 x (aZ)” : In € w such that z; # oo if and only if i < n}.

Observe that ©(Z) C E(2).

Endow the set Z2(Z) (resp. O(Z)) with the strongest topology generating the
Tychonov product topology on each compact subset from the family Kz (resp. Ko),
where

Kz = {2 x [[;¢,, Ci : C; are compact subsets of aZ and almost all C; = {oo} };

Ke = {2 x [[;c,, Ci : Jio € w such that Cy, = aZ, C; = {oo} for all i > iy and
C; is a compact subsets of Z for every i < ig}.

Lemma 6. Suppose Z is a zero-dimensional locally metrizable locally compact s-
pace. Then

(1) the spaces Z(Z) and ©(Z) are topologically homogeneous;

(2) 2(Z2) is a regular zero-dimensional k,-space while ©(Z) is a totally discon-
nected k-space;

(3) if Z is Lindeldf, then E(Z) and O(Z) are zero-dimensional MK, -spaces
with
Y(E(2)) = x(0(2)) < o;

(4) Z(Z) and ©(Z) contain copies of the space aZ while O(Z) contains a closed
copy of Z;

(5) s3(2(2)) = 53(0(2)) = c53.(aZ), 5 (E(2)) = 5, (0(2)) = cs(a2),
sby (0(Z)) = sby(aZ), and (E(2)) = (0(2)) = ¢(aZ);

(6) the spaces Z(Z) and ©(Z) are sequential if and only if aZ is sequential;

(7) if Z is not countably compact, then Z(Z) contains a closed copies of So and
Sw and O(Z) contains a closed copy of Ss.

Proof. (1) First we show that the space Z(Z) is topologically homogeneous.
Given two points (¢, (2i)icw), (¢, (2})icw) of Z(Z) we have to find a homeomor-
phism h of Z(Z) with h(c, (2i)icw) = (¢, (2})icw). Since the Cantor cube 2¢ is
topologically homogeneous, we can assume that ¢ # ¢/. Fix any disjoint closed-
and-open neighborhoods U, U’ of the points ¢, ¢’ in 2¥, respectively.

Consider the finite sets I = {i € w: z; # oo} and I' = {i € w: z] # oco}. Using
the zero-dimensionality and the local metrizability of Z, for each i € I (resp. i € I')
fix an open compact metrizable neighborhood U; (resp. U/) of the point z; (resp.
z;) in Z. By the classical Brouwer Theorem [Ke, 7.4], the products U x [ ], U; and
U' x [I;ep Ui, being zero-dimensional compact metrizable spaces without isolated
points, are homeomorphic to the Cantor cube 2¢. Now the topological homogeneity
of the Cantor cube implies the existence of a homeomorpism f : U x [[;c; Ui —
U' x [I;ep Uj such that f(c, (2i)ier) = (¢, (2])ier). Let

W = {(z, (%;)icw) € E(Z) 1z € U, x; € U; for all i € I} and

W' ={(a, (2})icw) € E(Z) : 2" € U', z} € U] for all i € I'}.

It follows that W, W' are disjoint open-and-closed subsets of Z(Z). Let x : w\ I' —
w \ I be a unique monotone bijection.

Now consider the homeomorphism f : W — W’ assigning to a sequence (z, (%;)ic.) €

W the sequence (2, (2})ic,) € W' where (', (z})icr) = f(x,(x;)icr) and 2} =
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xy(;) for i ¢ I'. Finally, define a homeomorphism h of Z(Z) letting

x ifx g WUW';
h(z) =< f(x)  ifzeW;
fz) fzew’

and observe that h(c, (2;)icw) = (¢, (2})icw) which proves the topological homo-
geneity of the space Z(Z).

Replacing Z(Z) by ©(Z) in the above proof, we shall get a proof of the topological
homogeneity of ©(Z7).

The items (2-4) follow easily from the definitions of the spaces Z(Z) and 0(Z),
the zero-dimensionality of «Z, and known properties of k,-spaces, see [FST] (to
find a closed copy of Z in ©(Z) consider the closed embedding e : Z — 0(Z2),
e:z—(z,20,2,00,00,...), where zq is any fixed point of Z).

To prove (5) apply Proposition 3(6,8,9,10). (To calculate the cs*-, cs-, and sb-
characters of ©(Z), observe that almost all members of any sequence (a,,) C ©(Z)
convergent to a point a = (¢, (z;)) € ©(Z) lie in the compactum 2 x[], ., Ci, where
C; is a clopen neighborhood of z; if z; # o0, C; = aZ if i = min{j € w: z; = o0}
and C; = {oo} otherwise. By Proposition 3(6), the cs*-, cs-, and sb-characters of
this compactum are equal to the corresponding characters of aZ.)

(6) Since the spaces Z(Z) and ©(Z) contain a copy of aZ, the sequentiality of
Z(Z) or ©(Z) implies the sequentiality of aZ. Now suppose conversely that the
space aZ is sequential. Then each compactum K € Kz U Kg is sequential since a
finite product of sequential compacta is sequential, see [En;, 3.10.I(b)]. Now the
spaces =(Z) and ©(Z) are sequential because they carry the inductive topologies
with respect to the covers Kz, Ko by sequential compacta.

(7) If Z is not countably compact, then it contains a countable closed discrete
subspace S C Z which can be thought as a sequence convergent to oc in aZ. It is
easy to see that Z(S) (resp. ©(S5)) is a closed subset of Z(Z) (resp. ©(Z)). Now it
is quite easy to find closed copies of Sy and S, in Z(S) and a closed copy of Ss in

a(S). O

With Lemma, 6 at our disposal, we are able to finish the proof of Theorem 5. To
construct the examples satisfying the conditions of Theorem 5(2,3), assume b = ¢
and use Proposition 4 to find a locally compact locally countable space Z whose one-
point compactification aZ is sequential and satisfies Xg = sby (aZ) < ¢¥(aZ) = c.
Applying Lemma, 6 to this space Z, we conclude that the topologically homogeneous
k-spaces Xo = Z(Z) and X3 = ©(Z) give us required examples.

The example of a countable topologically homogeneous k,,-space X; with sb, (X71)
X(X1) can be constructed by analogy with the space ©(N) (with that difference
that there is no necessity to involve the Cantor cube) and is known in topology
as the Ankhangelski-Franklin space, see [AF]. We briefly remind its construction.
Let So = {0, : n € N} be a convergent sequence and consider the countable
space X1 = {(%;)icw € S§ : In € w such that z; # 0iff i <n} endowed with the
strongest topology inducing the product topology on each compactum [],.,, C; for
which there is n € w such that C,, = Sp, C; = {0} if i > n, and C; = {x;} for some
x; € So\ {0} if i < n. By analogy with the proof of Lemma 6 it can be shown that
X is a topologically homogeneous k,-space with Rg = sb, (X1) < x(X1) =0 and
so(X1) = w.
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Proof of Proposition 5. The equivalences (1) < (2) & (3) were proved by
Lin [Lin, 3.13] in terms of (universally) csf-countable spaces. To prove the other
equivalences apply

Lemma 7. A Hausdorff topological space X is an ay-space provided one of the
following conditions is satisfied:

(1) X is a Fréchet-Urysohn az-space;

(2) X is a Fréchet-Urysohn countably compact space;
(3) sby(X) <p;
(4) sby(X) <0, each point of X is reqular Gs, and X is c-sequential.

Proof. Fix any point z € X and a countable family {S,}ne. of sequences conver-
gent to x in X. We have to find a sequence S C X \ {z} convergent to z and
meeting infinitely many sequences S,. Using the countability of the set | J, ., Sn
find a decreasing sequence (Up)new Of closed neighborhoods of x in X such that
(Npew Un) N (Unew Sn) = {z}. Replacing each sequence S,, by its subsequence
Sn N U,, if necessary, we can assume that S,, C U,.

(1) Assume that X is a Fréchet-Urysohn ar-space. Let A = {a € X : a is the
limit of a convergent sequence S C X meeting infinitely many sequences S, }. It
follows from our assumption on (S,) and (Uy,) that A C 1, Un

It suffices to consider the non-trivial case when z ¢ A. In this case = is a cluster
point of A (otherwise X would be not ay). Since X is Fréchet-Urysohn, there is a
sequence (a,) C A convergent to z. By the definition of A, for every n € w there
is a sequence T,, C X convergent to a and meeting infinitely many sequences .Sy,.
Without loss of generality, we can assume that T}, C |-, Si (because a € A\ {z}
and thus a ¢ | J,,c., Sn)- It is easy to see that = is a cluster pomt of the set (J,,c,, Tn-
Since X is Fréchet-Urysohn, there is a sequence T' C |J,,¢,, T convergent to z.

Now it rests to show that the set 7' meets infinitely many sequences S,,. Assuming
the converse we would find n € w such that T C U, ,, Sn. Then T' C |J;<,, T which
is not possible since Uz<n T; is a compact set failing to contain the point z.

(2) If X is Fréchet-Urysohn and countably compact, then it is sequentially com-
pact and hence a7, which allows us to apply the previous item.

(3) Assume that sb,(X) < p and let N be a sb-network at z of size |[N| < p.
Without loss of generality, we can assume that the family A is closed under finite
intersections. Let S = J,,c,, Sn and Fy,, = NN (U, Si) for N € N and n € w.
It is easy to see that the family F = {Fx, : N € N, n € w} consists of infinite
subsets of S, has size |F| < p, and is closed under finite intersection. Now the
definition of the small cardinal p implies that this family F has an infinite pseudo-
intersection T' C S. Then T is a sequence convergent to x and intersecting infinitely
many sequences S,. This shows that X is an ay4-space.

(4) Assume that the space X is c-sequential, each point of X is regular G, and
sby (X) < 0. In this case we can choose the sequence (Uy) to satisfy (,,c, Un = {z}.
Fix an sb-network A" at 2 with || < 0. For every n € w write S,, = {z,,; : i € N}.
For each sequential barrier N € A find a function fy : w — N such that z,; € N
for every n € w and i > fy(n). The family of functions {fy : N € N’} has size < d
and hence is not cofinal in N¥. Consequently, there is a function f : w — N such
that f £ fn for each N € V. Now consider the sequence S = {2y, ¢ : 1 € w}.
We claim that z is a cluster point of S. Indeed, given any neighborhood U of z,



ON GROUPS WITH COUNTABLE c¢s*-CHARACTER 19

find a sequential barrier N € N with N C U. Since f £ fn, there is n € w with
f(n) > fn(n). It follows from the choice of the function fy that z,, s,,) € N CU.

Since S\ U, is finite for every n, {z} = [, ¢, Un is a unique cluster point of
S and thus {z} U S is a closed subset of X. Now the c-sequentiality of X implies
the existence of a sequence T' C S convergent to z. Since T meets infinitely many
sequences Sy, the space X is ay. O

Proof of Proposition 6. Suppose a space X has countable cs*-character. The
implications (1) = (2,3,4,5) are trivial. The equivalence (1) < (2) follows from
Proposition 1(2). To show that (3) = (2), apply Lemma 7 and Proposition 5(3 =
1).
To prove that (4) = (2) it suffices to apply Proposition 5(4 = 1) and observe
that X is Fréchet-Urysohn provided x(X) < p and X has countable tightness. This
can be seen as follows.

Given a subset A C X and a point a € A from its closure, use the countable
tightness of X to find a countable subset N C A with a € N. Fix any neighborhood
base B at z of size |B| < p. We can assume that B is closed under finite intersections.
By the definition of the small cardinal p, the family {BN N : B € B} has infinite
pseudo-intersection S C N. It is clear that S C A is a sequence convergent to z,
which proves that X is Fréchet-Urysohn.

(5) = (2). Assume that X is a sequential space containing no closed copies of
S, and Sy and such that each point of X is regular Gs. Since X is sequential and
contains no closed copy of S, we may apply Lemma 2.5 [Lin] to conclude that
X is Fréchet-Urysohn. Next, Theorem 3.6 of [Lin] implies that X is an a4-space.
Finally apply Proposition 5 to conclude that X has countable sb-character and,
being Fréchet-Urysohn, is first countable.

The final implication (6) = (2) follows from (5) = (2) and the well-known

equality x(S,) = x(S2) = 0.

Proof of Proposition 7. The first item of this proposition follows from Propo-
sition 6(3 = 1) and the observation that each Fréchet-Urysohn countable compact
space, being sequentially compact, is az.

Now suppose that X is a dyadic compact with cs} (X) < Ro. If X is not metriz-
able, then it contains a copy of the one-point compactification aD of an uncount-
able discrete space D, see [En;, 3.12.12(i)]. Then cs}(aD) < csy(X) < R and
by the previous item, the space aD, being Fréchet-Urysohn and compact, is first-
countable, which is a contradiction.

Proof of Proposition 8. Let D be a discrete space.

(1) Let k = csy(aD) and A; (A2) is the smallest weight of a (regular zero-
dimensional) space X of size |X| = |D|, containing no non-trivial convergent se-
quence. To prove the first item of proposition 8 it suffices to verify that Ao < k < Ay.
To show that Ay < k, fix any cs*-network A at the unique non-isolated point oo
of aD of size |N| < k. The algebra A of subsets of D generated by the fami-
ly {D\ N : N € N} is a base of some zero-dimensional topology 7 on D with
w(D,7) < k. We claim that the space D endowed with this topology contains no
infinite convergent sequences. To get a contradiction, suppose that S C D is an
infinite sequence convergent to a point @ € D\ S. Then S converges to co in aD
and hence, there is an element N € A such that N C aD\ {a} and NNS is infinite.
Consequently, U = D \ N is a neighborhood of a in the topology 7 such that S\ U
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is infinite which contradicts to the fact that S converges to a. Now consider the
equivalence relation ~ on D: z ~ y provided for every U € 7 (z € U) & (y € U).
Since the space (D, 7) has no infinite convergent sequences, each equivalence class
[x]~ C D is finite (because it carries the anti-discrete topology). Consequently, we
can find a subset X C D of size | X| = |D| such that z £ y for any distinct points
z,y € X. Clearly that 7 induces a zero-dimensional topology on X. It rests to
verify that this topology is T1. Given any two distinct point z,y € X use x £ y to
find an open set U € A such that either x € U and y ¢ U or z ¢ U and y € U.
Since D \ U € A, in both cases we find an open set W € A such that z € W
but y ¢ W. It follows that X is a Tj-space containing no non-trivial convergent
sequence and thus Ay < w(X) < |A4| < |N| < &.

To show that k < Aq, fix any topology 7 on D such that w(D,7) < A; and the
space (D, T) contains no non-trivial convergent sequences. Let B be a base of the
topology 7 with |B] < Ay, closed under finite unions. We claim that the collection
N ={aD\ B : B € B} is a cs*-network for aD at co. Fix any neighborhood
U C aD of co and any sequence S C D convergent to co. Write {z1,...,z,} =
aD \ U and by finite induction, for every i < n find a neighborhood B; € B of
z; such that S\ U;<; B; is infinite. Since B is closed under finite unions, the set
N =aD\ (B, U---U B,) belongs to the family N and has the properties: N C U
and NNS is infinite, i.e., N is a cs*-network at oo in aD. Thus k < |N| < |B| < A1.
This finishes the proof of (1).

An obvious modification of the above argument gives also a proof of the item

(2).
Proof of Proposition 9. Let D be an uncountable discrete space.

(1) The inequalities X; -log|D| < cs} (aD) < csy(aD) follows from Proposition-
s 7(1) and 1(2,4) yielding |D| = x(aD) = sb,(aD) < 2°x(@P). The inequality
csy(aD) < ¢ - cof([log|D|]=¥) follows from proposition 8(2) and the observation
that the product {0, 1}1°¢ 1P endowed with the Xg-box product topology has weight
< ¢ - cof([log |D|]=*). Under the Ro-box product topology on {0,1}" we understand
the topology generated by the base consisting of the sets {f € {0,1}* : f|C = ¢|C}
where g € {0,1}* and C is a countable subset of x.

The item (2) follows from (1) and the equality X; -logx = 2% - min{x, (log x)“ }
holding under GCH for any infinite cardinal &, see [HJ, 9.3.8]
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