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Abstract. Assuming the existence of a P2κ-hypermeasurable cardinal,
we construct a model of Set Theory with a measurable cardinal κ such
that 2κ = κ++ and the group Sym(κ) of all permutations of κ cannot be
written as a union of a chain of proper subgroups of length < κ++. The
proof involves the iteration of a suitably defined uncountable version of
the Miller forcing poset as well as the “tuning fork” argument introduced
by the first author and K. Thompson in [11].

1. Introduction

A deep theorem of Macpherson and Neumann [16] states that if the

symmetric group Sym(κ) consisting of all permutations of a cardinal κ can

be written as a union of an increasing chain 〈Gi : i < λ〉 of proper subgroups

Gi, then λ > κ. Throughout this paper the minimal λ with this property

will be denoted by cf(Sym(κ)). It was proven in [22] that for κ = κ<κ the

pair (cf(Sym(κ)), 2κ) can be anything not obviously wrong. More precisely,

for every regular λ > κ and θ such that cf(θ) ≥ λ, there exist a cardinal

preserving forcing extension V P such that cf(Sym(κ)) = λ and 2κ = θ

in V P . Moreover, for inaccessible κ we can assume [17, § 1] that P is κ-

directed closed. Therefore if κ is supercompact, then it remains so in V Q∗P ,

where Q is a Laver preparation forcing making the supercompactness of κ

indestructible by κ-directed closed forcing notions. The main result of this

paper states that consistency of cf(Sym(κ)) > κ+ at a measurable κ can be

obtained assuming much less than supercompactness.

Theorem 1.1. Suppose GCH holds and there exists an elementary embed-

ding j : V →M such that crit(j) = κ and (H(κ++))V = (H(κ++))M . Then

there exists a forcing extension V ′ of V such that κ is still measurable in V ′

and V ′ � cf(Sym(κ)) = κ++.
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By work of Gitik [12] a cardinal κ of Mitchell order κ++ is required for

GCH to fail at a measurable cardinal; thus the hypothesis of our result is

close to optimal (it is in fact equiconsistent with the existence of a cardinal

κ whose Mitchell order for extenders is κ++ + 1).

A cardinal κ for which there exists an embedding such as in Theorem 1.1

will be called P2κ-hypermeasurable. To the best knowledge of the authors,

cf(Sym(κ)) = κ+ for measurable κ in all other known models of Set Theory

constructed under assumptions weaker than (a certain degree of) supercom-

pactness; see Remark 5.6 for a more detailed discussion.

The idea of the proof of Theorem 1.1 resembles that of the consistency of

u < cf(Sym(ω)) established in [23]. In particular, in section 2 we introduce

a variant of Miller forcing and a (slightly more general than in [14]) variant

of Sacks forcing at an inaccessible cardinal κ. According to Theorem 2.9,

iterated forcing constructions where at each stage we take any of these forc-

ing notions do not collapse κ+. In section 3 we introduce a new cardinal

characteristic gcl(κ), which is a version for κ of the classical groupwise den-

sity number g. Section 4 is devoted to the proof of the fact that suitably

arranged iterated forcing constructions considered in section 2 of length κ++

make cf(Sym(κ)) equal to κ++. More precisely, the Miller forcing is respon-

sible for cf∗(Sym(κ)) = κ++, while the Sacks forcing makes cf(Sym(κ)) and

cf∗(Sym(κ)) equal. (Here cf∗(Sym(κ)) is the minimal length of a special

chain of proper subgroups of Sym(κ) introduced in Definition 4.1.) And fi-

nally, in section 5 we show how to extend elementary embeddings to forcing

extensions considered in section 2, and thus prove Theorem 1.1. The idea

of the proof in section 5 can be traced back to the work [11], where the

“tuning fork” argument was introduced.

2. A variant of Miller forcing for uncountable cardinals.

Basic properties. Alternation with Sacks.

In this section we suggest one of the possible ways to generalize the

Miller forcing introduced in [18] to uncountable cardinals and study some

basic properties of iterated forcing constructions, where at each stage we

take either the Miller or Sacks forcing poset. The discussion is patterned

after Kanamori [14]. It is worth mentioning here that there are other gen-

eralizations of Miller forcing, see e.g. [5].

Throughout this section κ denotes a strongly inaccessible cardinal.

Definition 2.1. Let p ⊂ κ<κ. For s ∈ p we denote by C(p, s) (or simply

by C(s) if p is clear from the context) the set {α ∈ κ : ŝ α ∈ p}.
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Miller(κ) denotes the following forcing. A condition is a subset p of κ<κ

such that

(i) s ∈ p, t ⊂ s −→ t ∈ p.

(ii) Each s ∈ p is increasing and has a proper extension in p.

(iii) For every α < κ limit, s ∈ κα, if s � β ∈ p for arbitrary large β < α,

then s ∈ p.

(iv) For every s ∈ p there is t ∈ p with s ⊂ t which splits in p (i.e., C(p, t)

has more than one element). Moreover, if t0, t1 split in p and t0 ⊂ t1, then

C(p, t1) ⊂ C(p, t0).

(v) If s ∈ p splits in p, then the set C(p, s) is club.

(vi) If α is a limit ordinal, s ∈ κα, and s � β splits in p for arbitrary

large β < α, then s splits in p and C(s) is the intersection of C(s � β) for

all β such that s � β splits in p.

We order Miller(κ) by declaring p to be stronger than q (and write p ≤ q)

iff p ⊂ q. 2

It is clear that Miller(κ) is κ-closed. For every subtree p of κ<κ we denote

by Split(p) the family of all s ∈ p which split in p. Given s ∈ κ<κ, `(s)

denotes the length of s, i.e. the (unique) α such that s ∈ κα. If p ∈ Miller(κ)

and α ∈ κ, then we denote by Splitα(p) the set

{s ∈ p : o.t .({t & s : t ∈ Split(p)}) ≤ α, ∀t & s(o.t .(s(`(t))∩C(p, t)) ≤ α)}.

In what follows we shall heavily apply a fusion argument to Miller(κ) as

well as to the Sacks forcing.

Definition 2.2. For q ≤ p ∈ Miller(κ) and α ∈ κ the notation q ≤α pmeans

that Splitα(p) = Splitα(q). A sequence 〈pα : α ∈ κ〉, where pα ∈ Miller(κ),

is called a fusion sequence, if

(i) If β ≤ α, then pα ≤ pβ.

(ii) pα+1 ≤α pα.

(iii) pδ = ∩α<δpα for limit δ ∈ κ. 2

The following lemma is straightforward.

Lemma 2.3. Let 〈pα : α ∈ κ〉 be a fusion sequence. Then q =
∩
α∈κ pα ∈

Miller(κ) and q ≤α pα for all α ∈ κ.

Next, we recall the definition of the Sacks forcing for uncountable cardi-

nals.
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Definition 2.4. Let us fix a sequence ~A = 〈Aα : α < κ〉 such that |Aα| < κ

for all α. Let T be the set of all functions t which satisfy the following

conditions.

(i) There exists α such that the domain of t equals α.

(ii) For all β ∈ dom(t), t(β) ∈ Aβ.

Sacks( ~A) stands for the forcing whose conditions are subsets T of T such

that:

(1) s ∈ T , t ⊂ s→ t ∈ T .

(2) Each t has a proper extension in T .

(3) If t ∈ T and the set of such β that t � β ∈ T is unbounded in `(t),

then t ∈ T .

(4) There exists a club C(T ) such that the set succT (t) of immediate

successors of an element t ∈ T with domain α coincides with {t̂ a : a ∈ Aα}
provided α ∈ C(T ), and |succT (t)| = 1 otherwise.

Extension is defined by S ≤ T iff S is a subset of T . 2

When each Aα is {0, 1} we get the usual Sacks forcing considered in

[7, 11, 14]. Some other sequences ~A are employed in [9]. Yet another

sequence will be used in Section 4. But the basic properties (e.g. chain

condition, fusion) of Sacks( ~A) does not really depend on ~A.

Given any T ∈ Sacks( ~A) and i ∈ κ, we denote by Spliti(T ) the set

{t ∈ T : (∃j ≤ i)`(t) = αj}, where 〈αi : i ∈ κ〉 is the increasing enumeration

of C(T ). Now the notions of ≤α and of a fusion sequence can be introduced

for Sacks( ~A) in the same way as for Miller(κ).

If γ is an ordinal and S0, S1 are disjoint subsets of γ such that S0
∪
S1 =

γ, then we denote by STS0,S1, ~A the forcing poset Pγ from the iterated forcing

construction 〈Pξ, Q̇η : ξ ≤ γ, η < γ〉 with supports of size ≤ κ defined as

follows:

{η < γ : Pη 
 Q̇η = Miller(κ)} = S0 and {η < γ : Pη 
 Q̇η = Sacks( ~A)} = S1.

Definition 2.5. Suppose that α ≤ κ and 〈pβ : β ∈ α〉 is a decreasing

sequence of elements of STS0,S1, ~A. The “meet” q =
∧
β∈α pβ ∈ STS0,S1, ~A

is defined as follows: supp(q) =
∪
β∈α supp(pβ) and for every ξ ∈ supp(q),

q � ξ 
 q(ξ) =
∩
β∈α pβ(ξ). (Note that in case α = κ there could be no such

q.) 2

In order to prove that κ+ is preserved by STS0,S1, ~A and κ++ is preserved

for γ = κ++ we need to employ a suitable variant of fusion.
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Definition 2.6. Suppose that α ∈ κ, F ∈ [γ]<κ, and q, p ∈ STS0,S1, ~A.

q ≤F,α p means that q ≤ p and q � ξ 
 q(ξ) ≤α p(ξ) for all ξ ∈ F .1

A sequence 〈(pα, Fα) : α ∈ κ〉 is a generalized fusion sequence (for

STS0,S1, ~A), iff

(i) |Fα| < κ for all α ∈ κ.

(ii) Fα ⊃ Fβ for all β ≤ α < κ.

(iii) pα+1 ≤Fα,α pα for all α.

(iv) If δ is limit, then Fδ =
∪
β<α Fβ and pδ =

∧
α<δ pα.

(v)
∪
{Fα : α ∈ κ} =

∪
{supp(pα) : α < κ}. 2

The easy but technical proof of the following lemma is left to the reader.

Lemma 2.7. Let 〈(pα, Fα) : α ∈ κ〉 be a generalized fusion sequence for

STS0,S1, ~A. Then q =
∧
α<κ pα ∈ STS0,S1, ~A and q ≤Fα,α pα for all α ∈ κ.

There is no loss of generality to assume that each Aα is an element of κ.

Definition 2.8. Suppose that p ∈ STS0,S1, ~A, F ⊂ supp(p) with |F | < κ,

and σ : F → κ<κ. Then p|σ is a function with the same domain as p

such that (p|σ)(ξ) equals p(ξ) if ξ 6∈ F and p(ξ)σ(ξ) otherwise, where for

q ∈ Miller(κ) ∪ Sacks( ~A) and t ∈ κ<κ, qt denotes the set of all elements of

q compatible with t. 2

It is clear that p|σ ∈ STS0,S1, ~A if and only if for every ξ ∈ F we have

(p|σ) � ξ 
ξ σ(ξ) ∈ p(ξ). If p|σ ∈ STS0,S1, ~A, then we say that σ lies on p.

Theorem 2.9. For every ordinal γ and decomposition γ = S0 ∪ S1 the

forcing STS0,S1, ~A preserves cardinals ≤ κ+.

Suppose that 2κ = κ+ in V . If γ < κ++, then there exists a dense subset

Wγ ⊂ STS0,S1, ~A of size |Wγ| ≤ κ+. If γ = κ++, then STS0,S1, ~A has the

κ++-chain condition.

Similar results were discussed in [14] and [7] for the Sacks forcing. Nev-

ertheless, we give complete proofs here. Our exposition follows [14]. The

first part of Theorem 2.9 follows from the lemma below.

Lemma 2.10. (1) Assume that p ∈ STS0,S1, ~A and p 
 ż ∈ V . Then for

every F ∈ [γ]<κ and α0 ∈ κ there exists q ≤F,α0 p and x ∈ V with

|x| ≤ κ such that q 
 ż ∈ x.

(2) Assume that p ∈ STS0,S1, ~A and p 
 “ż ∈ V and |ż| ≤ κ”. Then for

every F ∈ [γ]<κ and α0 ∈ κ there exists q ≤F,α0 p and x ∈ V with

|x| ≤ κ such that q 
 ż ⊂ x.

1The preorder ≤α here depends on whether ξ ∈ S0 or ξ ∈ S1.
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Proof. It is well-known how to obtain the second item from the first one,

see [14, Theorem 2.3].

In order to prove the first item we shall inductively construct a general-

ized fusion sequence 〈(pα, Fα) : α ∈ κ〉 with (pβ, Fβ) = (p, F ) for all β ≤ α0,

and x ∈ V of size |x| ≤ κ such that q =
∧
α∈κ pα and x are as required. The

trivial description of how to construct Fα’s is omitted. The limit step of the

construction is obvious, so we concentrate on the successor case.

Let us enumerate as {σα,i : i ∈ η} all ground model functions σ : Fα →
κα+1 which lie on some r ≤ pα so that r = r|σ, r � ξ 
 σ(ξ) � α ∈
Splitα(pα(ξ)) for all ξ ∈ Fα, and σ(ξ)(α) = α for all ξ ∈ Fα ∩ S0. (Here

η < κ is a cardinal.) We shall construct a sequence 〈pα,i : i ∈ η〉 as follows.

Set pα,−1 = pα and suppose that we have already constructed a decreasing

sequence 〈pα,j : j < i〉 such that pα,j ≤Fα,α pα,k for all k ≤ j < i. If i is

limit, we set pα,i =
∧
j<i pα,j. Suppose that i = j + 1. If there is no r ≤ pα,j

such that r = r|σα,j and r � ξ 
 σ(ξ) � α ∈ Splitα(pα(ξ)) for all ξ ∈ Fα,

we set pα,i = pα,j. And if there is such r, let rα,j ≤ r and xα,j ∈ V be such

that rα,j 
 ż = xα,j. Now, using the Maximal Principle we define pα,j+1 to

be the amalgamation of pα,j and rα,j as in the proof of [14, Theorem 2.2].

More precisely,

(a) supp(pα,j+1) = supp(rα,j).

(b) If ξ ∈ Fα, then pα,j+1(ξ) is such that

rα,j � ξ 
 pα,j+1(ξ) = (pα,j(ξ) \ pα,j(ξ)σα,j(ξ))
∪

rα,j(ξ),

and for any condition c ≤ pα,j+1 � ξ incompatible with rα,j � ξ,
c 
ξ pα,j+1(ξ) = pα,j(ξ).

(c) if ξ 6∈ Fα, then pα,j+1(ξ) is such that

rα,j � ξ 
 pα,j+1(ξ) = rα,j(ξ),

and for any condition c ≤ pα,j+1 � ξ incompatible with rα,j � ξ,
c 
ξ pα,j+1(ξ) = pα,j(ξ).

Now we let pα+1 =
∧
i∈η pα,i. It follows that pα+1 ≤Fα,α pα. This completes

our construction of 〈(pα, Fα) : α ∈ κ〉. Set x = {xα,i}.

Claim 2.11. Suppose that r ≤ q. Then there exists a sequence 〈rα : α ∈ κ〉
of elements of STS0,S1, ~A with r0 = r, a sequence 〈σα : Fα → κ<κ|α < κ〉,
and sequences 〈µα,ξ, να,ξ : α ∈ κ, ξ ∈ Fα〉 of ordinals less than κ such that

(i) If β < α, then rα ≤ rβ.

(ii) If ξ ∈ Fα, then `(σα(ξ)) = µα,ξ + 1.

(iii) If β < α, then σβ(ξ) ( σα(ξ) for all ξ ∈ Fβ.
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(iv) For every ξ ∈ Fα+1 we have rα+1 � ξ 
“rα+1(ξ) = rα+1(ξ)σα+1(ξ),

σα+1(ξ) � µα+1,ξ splits in rα(ξ),

and σα+1(ξ) � µα+1,ξ ∈ Splitνα+1,ξ
(q(ξ))”.

(v) If δ is limit, then

– σδ(ξ) � µδ,ξ =
∪
α<δ σα(ξ);

– σδ(ξ)(µδ,ξ) = sup{σα(ξ)(µα,ξ) : α < δ} for all ξ ∈ Fδ ∩ S0

(We assume that σα(ξ) = ∅ for all ξ 6∈ Fα);

– νδ,ξ = supα<δ να,ξ for all ξ ∈ Fδ;

– rδ � ξ 
“σδ(ξ) ∈ rδ(ξ), σδ(ξ) � µδ,ξ splits in rδ(ξ),

and σδ(ξ) � µδ,ξ ∈ Splitνδ,ξ
(q(ξ))” for all ξ ∈ Fδ.

Proof. The construction proceeds by induction. For limit δ we simply set

σδ(ξ) and νδ,ξ to be so as it is required in (v) and rδ =
∧
α<δ rα. Thus

µδ,ξ = supα<δ µα,ξ. Let us fix any α < δ and ξ ∈ Fα ∩ S0. From the

above it follows that rδ � ξ 
“σβ(ξ) � µβ,ξ splits in rα(ξ) for all α <

β < δ”, and hence rδ � ξ 
“σδ(ξ) � µδ,ξ splits in rα(ξ)”, and consequently

rδ � ξ 
“σδ(ξ) � µδ,ξ splits in rδ(ξ) =
∩
β<δ rβ(ξ)”. By the definition of

Miller(κ), rδ � ξ 
 C(rα(ξ), σδ(ξ) � µδ,ξ) =
∩
α<β<δ C(rα(ξ), σβ(ξ) � µβ,ξ),

and hence rδ � ξ 
 σδ(ξ)(µδ,ξ) = supα<β<δ σβ(ξ)(µβ,ξ) ∈ C(rα(ξ), σδ(ξ) �
µδ,ξ)), which implies that rδ � ξ 
 σδ(ξ)(µδ,ξ) ∈ C(rδ(ξ), σδ(ξ) � µδ,ξ) =∩
α<δ C(rα(ξ), σδ(ξ) � µδ,ξ)), which gives us that rδ � ξ 
 σδ(ξ) ∈ rδ(ξ).

Finally, equalities σδ(ξ) � µδ,ξ =
∪
α<δ σα(ξ) � µα,ξ and νδ,ξ = supα<ξ να,ξ

combined with rδ � ξ 
 σα(ξ) � µα,ξ ∈ Splitνα,ξ
(q(ξ)) imply rδ � ξ 
 σδ(ξ) �

µδ,ξ ∈ Splitνδ,ξ
(q(ξ)), which completes the limit step.

At successor step α + 1 consider the increasing enumeration 〈ξi : i < η〉
of Fα+1 and find a decreasing sequence 〈ui : i < η〉 of elements of STS0,S1, ~A

as follows: Set ui =
∧
j<i uj for limit i. Now given ui, find v ≤ ui � ξi,

π ∈ κµ+1 for some µ ∈ κ, and ν ∈ κ such that π ⊃ σα(ξi) if ξi ∈ Fα and

v 
ξi π ∈ rα(ξi), π � µ ∈ Splitν(q(ξi)) ∩ Split(rα(ξi)).

Then we set

ui+1 = v̂rα(ξi)π ̂ rα � (γ \ (ξi + 1)),

σα+1(ξi) = π. (µα+1,ξi and να+1,ξi automatically become equal to µ and ν

respectively.) With ui’s thus defined, we set rα+1 =
∧
i<η ui. This completes

the inductive construction, hence the proof of the claim. �

The following claim is obvious.

Claim 2.12. There exists a club C ⊂ κ such that µα,ξ = να,ξ = α and

σα(ξ)(µα,ξ) = α for every α ∈ C and ξ ∈ Fα. Consequently, rα � ξ 

σα(ξ) � α ∈ Splitα(q(ξ)) for every such α ∈ C and ξ ∈ Fα.
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We are in a position now to finish the proof of Lemma 2.10. Let C be

such as in Claim 2.12 and α ∈ C. Then σα = σα,i for some i < η (see the

construction of pα+1 at the beginning of the proof of Lemma 2.10). Since

rα+1 ≤ q ≤ pα,i, Claim 2.11(iv) implies that for every ξ ∈ Fα+1 ⊃ Fα we

have rα+1 � ξ 
 rα+1(ξ) = rα+1(ξ)σα(ξ). Therefore the construction of pα,i+1

is nontrivial. Since rα+1 ≤ q ≤ pα,i+1, rα+1 = rα+1|σα ≤ pα,i+1|σα,i = rα,i,

and hence rα+1 
 ż = xα,i. Therefore for every r ≤ q there exists r′ ≤ r

such that r′ 
 ż ∈ x, which finishes our proof. �

Proof of Theorem 2.9. The proof is analogous to that of [14, Lemma 3.1].

Let Wγ be the set of those q ∈ STS0,S1, ~A such that:

(i) There is an increasing sequence 〈Fα : α ∈ κ〉 of subsets of γ such that

|Fα| < κ for all α, Fδ =
∪
α∈δ Fα for limit δ, and

∪
α∈κ Fα = supp(q).

(ii) For every α there exists a (possibly empty) collection Σα of ground

model functions σ : Fα → κα+1 of size |Σα| < κ such that q|σ ∈ STS0,S1, ~A

for all σ ∈
∪
α∈κ Σα, and whenever β ∈ κ and r ≤ q, there exists α > β and

σ ∈ Σα so that r and q|σ are compatible.

The proof of Lemma 2.10 gives thatWγ is dense in STS0,S1, ~A. In addition,

almost literal repetition of the proof of [14, Lemma 3.1] gives that if a pair

of sequences

〈〈Fα : α ∈ κ〉, 〈Σα : α ∈ κ〉〉

is a witness for qi ∈ Wγ, i ∈ 2, then q0 ≤ q1 ≤ q0 in STS0,S1, ~A. It suffices to

note that there are at most κ+-many such pairs.

Finally, the fact that STS0,S1, ~A has κ++-chain condition provided γ =

κ++ is a direct consequence of [1, Theorem 2.2]. 2

At this point we would like to note that there has been extensive work

by Eisworth, Roslanowski, Shelah and perhaps others on possible general-

izations of proper forcing to uncountable cardinals, see, e.g., [8, 19]. It is

plausible that Theorem 2.9 follows from one of the general results about

uncountable versions of proper forcing. However Claim 2.11 will play a cen-

tral role in the proof of Claim 5.4, and for this reason we gave a complete

proof of Theorem 2.9 instead of trying to put it into the framework of the

results from [8] or [19].

3. Miller(κ) and a variant of the groupwise density number

Throughout this section κ is strongly inaccessible, 2κ = κ+ in V , κ++ =

S0 t S1, ~A = 〈Aα : α ∈ κ〉 is a sequence of ordinals below κ, and S0 is

κ+-stationary (we use t as notation for disjoint union). Here we define a
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new cardinal characteristic of κ and show that iteration of Miller(κ) pushes

it to κ++.

Definition 3.1. We say that G ⊂ [κ]κ is a cgd-family (abbreviated from

club groupwise dense), if for every continuous increasing function φ : κ→ κ

there exists a club C ⊂ κ such that
∪
α∈C φ(α+1)\φ(α) ∈ G, and for every

A ∈ G and B ∈ [κ]κ such that |B \ A| < κ we have B ∈ G. In what follows

the minimal size of a collection G of cgd-families with empty intersection is

denoted by gcl(κ). 2

Theorem 3.2. Suppose that G is a STS0,S1, ~A-generic filter. Then V [G] |=
gcl(κ) = κ++.

The proof of Theorem 3.2 is divided into a sequence of lemmas.

Lemma 3.3. Suppose that G is a STS0,S1, ~A-generic filter. Then for every

subset x of κ such that x ∈ V [G] there exists γ < κ++ such that x ∈ V [Gγ],

and the smallest such γ has cofinality ≤ κ.

Proof. Let ẋ be a STS0,S1, ~A-name of x. Note that the set D ⊂ Wκ++ of all

q ∈ STS0,S1, ~A such as in the proof of Theorem 2.9 with additional property

that for every σ ∈ Σα the condition q|σ decides ẋ(β) for all β < α, is dense

in STS0,S1, ~A. (Any q obtained along the lines of the proof of Lemma 2.10

with an extra requirement that rα,j decides ẋ(β) for all β < α belongs to D.)

Item (ii) from the proof of Theorem 2.9 implies that {q|σ : σ ∈
∪
α∈κ Σα} is

predense below q. Therefore for every q ∈ D and β ∈ κ there exists a subset

Eq,β predense below q of size ≤ κ and such that each element of Eq,β decides

ẋ(β). From the above it follows that for every q ∈ D we have q 
 ẋ = π,

where π = {〈 ˇ〈β, iβ,r〉, r〉 : β ∈ κ, r ∈ Eq,β} and r 
 ẋ(β) = iβ,r. The rest of

the proof is straightforward. �

The following lemma resembles [3, Lemma 5.10].

Lemma 3.4. Let G be a STS0,S1, ~A-generic filter and F ∈ V [G] be a cgd-

family. There is a κ+-closed unbounded set of ordinals η < κ++ for which

F ∩ V [Gη] ∈ V [Gη] and F ∩ V [Gη] is a cgd-family in V [Gη].

Proof. Let Ḟ be a STS0,S1, ~A-name for F and p ∈ G be a condition which

forces that Ḟ is a cgd-family, and γ < κ++ be such that p ∈ Pγ. The proof

of Lemma 3.3 yields a set Πγ of Pγ-names of size |Πγ| = κ+ such that for

every Pγ-generic filter H and x ∈ P(κ)∩V [H] there exists π ∈ Πγ with the

property x = πH . For every π ∈ Πγ we denote by B(π) a maximal antichain

of conditions in Pκ++ that decide whether π ∈ Ḟ . Let η1 = η1(γ) be the
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supremum of the union of supports of all conditions appearing in some B(π),

π ∈ Πγ. (Recall that STS0,S1, ~A has κ++-c.c..) Then F ∩ V [Gγ] ∈ V [Gη1 ].

For every π ∈ Πγ we can find a maximal antichain A(π) below p whose

elements decide whether π is (the range of) a continuous increasing function,

and if q ∈ A(π) decides that π is such, then for some ξ(π, q) > γ and

θπ,q ∈ Πξ(π,q), q forces θπ,q to be a club and
∪
α∈θπ,q

[π(α), π(α+1)) ∈ Ḟ . Let

η2 be the upper bound of the set{
ξ(π, q) : π ∈ Πγ, q ∈

∪
π∈Πγ

A(π)
}

∪
{
supp(q) : q ∈

∪
π∈Πγ

A(π)
}
.

Then η(γ) := max{η1, η2} has the properties ḞH ∩ V [Hγ] ∈ V [Hη(γ)], and

if ψ ∈ V [Hγ] is any continuous increasing sequence, then there is a club

C ∈ V [Hη(γ)] so that
∪
α∈C [ψ(α), ψ(α+1)) ∈ ḞH , where H is any STS0,S1, ~A-

generic filter containing p.

Let E ⊂ κ++ be the κ+-closed unbounded set of those η such that η(γ) ≤
η for all γ < η. We claim that E is as required. Indeed, by Lemma 3.3 for

every η ∈ E we have F ∩V [Gη] = {πGη : ∃γ < η(π ∈ Πγ ∧B(π)∩Gη 6= ∅)},
and the last set is obviously in V [Gη]. Now suppose that ψ ∈ V [Gη] is a

continuous increasing function from κ to κ. Applying Lemma 3.3 we can

find γ < η such that ψ ∈ V [Gγ]. From the above it follows that there is a

club C ∈ V [Gη(γ)] ⊂ V [Gη] so that
∪
α∈C [ψ(α), ψ(α + 1)) ∈ ḞG ∩ V [Gη],

which finishes our proof. �

Lemma 3.5. For every p ∈ Miller(κ) there exists a continuous increasing

sequence 〈να : α ∈ κ〉 such that for every club C there exists q ≤ p such

that the range of every branch through q is almost (=modulo a subset of size

< κ) contained in
∪
α∈C [να, να+1).

Proof. We inductively define a desired sequence 〈να〉α∈κ. Choose ν0 arbi-

trary. For limit δ ∈ κ we set νδ = supα∈δ να. After να is defined, let β > να

be such that for every s ∈ p whose range is a subset of να and ξ ∈ [να, β),

if ŝ ξ ∈ p, then the range of the smallest extension t ∈ Split(p) of ŝ ξ is

contained in β. We set να+1 = β.

We claim that the sequence 〈να : α ∈ κ〉 is as required. Indeed, it is

continuous by the construction. Let C and D ⊂
∪
α∈C [να, να+1) be clubs.

(The role of D here is to ensure that the splitting nodes of the condition

q constructed below split into clubs rather than into sets containing clubs.

We could take, e.g., D = {α ∈ C : να = α}.) Let q be the tree generated

by the set of those s = s1 ξ̂ ∈ p such that s1 ∈ Split(p) and for every t ≤ s,

if t ∈ Split(p), then s(`(t)) ∈
∪
α∈C\µ(t)[να, να+1) ∩ D, where µ(t) is the
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minimal ordinal µ such that νµ contains the range of t. Then q ∈ Miller(κ).

It suffices to note that the range of each branch through q is a subset of∪
α∈C [να, να+1)

∪
β, where β is the range of the stem (=smallest splitting

element) of p. �

Proof of Theorem 3.2. The simple density argument based on Lemma 3.5

gives us that if H is a Miller(κ)-generic filter and F is a cgd-family in V ,

then the range of
∩
H ∈ κκ is almost included in some F ∈ F .

Now let F ∈ V [G] be a collection of cgd-families of size κ+. For every

F ∈ F Lemma 3.4 yields a κ+-closed unbounded set CF ∈ P(κ++) ∩ V

such that F ∩ V [Gη] ∈ V [Gη] and F ∩ V [Gη] is a cgd-family in V [Gη] for

every η ∈ CF . Let us fix η ∈ S0 ∩
∩

F∈FCF . From the above it follows

that Gη+1 = Gη ∗H, where H is a Miller(κ)-generic filter over V [Gη]. As we

already noted, H gives rise to a subset X ∈ V [Gη+1] of κ such that for every

F ∈ F there exists F ∈ F ∩ V [Gη] such that X ⊂ F . Therefore X ∈
∩

F,

which finishes our proof. 2Theorem 3.2.

4. A new lower bound for the cofinality of symmetric group

In this section κ denotes a strongly inaccessible cardinal. The main result

of this section says that for a certain sequence ~A, if both S0 and S1 are κ+-

stationary and G is STS0,S1, ~A-generic, then V [G] � cf(Sym(κ)) = κ++. The

motivation for this is given in section 5. We follow the strategy of the

proof of [23, Theorem 2.2]. In its turn that proof relies upon the methods

developed in [21, § 2].

Following [23] we give the following definition.

Definition 4.1. For a subset A of κ we shall identify the group Sym(A)

with the subgroup of Sym(κ) consisting of permutations σ such that σ �
(κ \ A) = idκ\A.

For every increasing ψ ∈ κκ we denote by Pψ the group
∏

α∈κ Sym(ψ(α+

1)\ψ(α)), which will be identified with a subgroup of Sym(κ). cf∗(Sym(κ))

is the least cardinal λ such that it is possible to express Sym(κ) =
∪
i<λ Γi

as the union of a chain of proper subgroups such that for every increasing

continuous φ ∈ κκ there exists i ∈ λ such that Pφ is a subgroup of Γi.

For an increasing function θ : κ → κ we set θ̃(α) = supξ∈α θ(ξ) and

Qθ = Pθ̃. (Note that θ̃ is continuous and Pθ ⊂ Qθ.) 2

The following lemma resembles [23, Theorem 2.6]. But the proofs of

Lemma 4.2 and Theorem 2.6 from [23] are completely different.
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Lemma 4.2. cf∗(Sym(κ)) ≥ gcl(κ).

Proof. The proof is divided into two steps.

Claim 4.3. For every π ∈ Sym(κ) there exists continuous increasing ψ ∈ κκ

such that π ∈ Pψ.

Proof. For any α ∈ κ we set β(α) = min{π(ξ) : ξ ≥ α} and γ(α) =

sup{π(ξ) : ξ ∈ α}. Since π is a bijection, the Fodor’s lemma implies that

β(α) ≥ α for club many α’s. Therefore there exists a club C ⊂ κ such that

γ � C = idC and β(α) ≥ α for all α ∈ C. Now, the increasing bijective

enumeration ψ : κ→ C ∪ {0} is as required. �

Given any B ∈ [κ]κ, we denote by eB : κ → B the increasing bijective

enumeration of B. Note that continuous strictly increasing functions from

κ to κ are exactly those of the form eC for a club C.

Claim 4.4. Let Γ be a subgroup of Sym(κ) containing Sym0(κ) = {π :

π(α) = α for all but < κ many α’s} and such that 〈Γ, g〉 6= Sym(κ) for all

g ∈ Sym(κ), and GΓ = {A ∈ [κ]κ : ∀B (|B \ A| < κ → QeB
6⊂ Γ)}. Then

GΓ is a cgd-family.

Proof. Let φ : κ→ κ be a continuous increasing function. Since Sym0(κ) ⊂
Γ, the family GΓ is closed under modifications of size < κ of its elements.

Thus it is enough to show that there exists a club C such that, letting

Cφ =
∪
α∈C [φ(α), φ(α + 1)), we have Cφ ∈ GΓ, which means QeCφ

6⊂
Γ. Assume to the contrary that QeCφ

⊂ Γ for every club C ⊂ κ. Set

O =
∪
α odd[φ(α), φ(α + 1)). We claim that Sym(O) ⊂ Γ. Once this

is established, we get a contradiction with [16, Lemma 2.4]. Let us fix

σ ∈ Sym(O). Claim 4.3 yields a continuous increasing ψ : κ→ κ such that

σ ∈
∏

ξ∈κ Sym([eO ◦ ψ(ξ), eO ◦ ψ(ξ + 1))
∩
O). Set C = {α : α is limit and

φ(α) = supξ∈α eO ◦ψ(ξ)}. It is clear that C is club. Since elements of C are

limit ordinals, the choice of O ensures that Cφ ∩O = ∅. We claim that

(1) [φ(α), φ(α+ 1))
∩

[eO ◦ ψ(ξ), eO ◦ ψ(ξ + 1)) = ∅

for every α ∈ C and ξ ∈ κ. Indeed, if ξ < α, then eO ◦ ψ(ξ + 1) <

supη<α eO ◦ ψ(η) = φ(α). Now suppose ξ ≥ α. Then O 3 eO ◦ ψ(ξ) ≥ φ(α),

and therefore [φ(α), φ(α+ 1)) ∩O = ∅ implies eO ◦ ψ(ξ) ≥ φ(α+ 1), which

proves (1). For any ξ ∈ κ consider α(ξ), β(ξ) ∈ κ such that α(ξ) = min{α ∈
C : φ(α) ≥ eO◦ψ(ξ+1)} and φ(α(ξ)) is the β(ξ)’th element of Cφ. Equation
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(1) gives

[eO ◦ ψ(ξ), eO ◦ ψ(ξ + 1)) ⊂ [ sup
β<β(ξ)

eCφ
(β), eCφ

(β(ξ))) =

= [ẽCφ
(β(ξ)), ẽCφ

(β(ξ) + 1)),

and therefore∏
ξ∈κ

Sym([eO ◦ ψ(ξ), eO ◦ ψ(ξ + 1))
∩

O) ⊂ QeCφ
⊂ Γ,

which implies σ ∈ Γ and thus completes our proof. �

Let us express Sym(κ) =
∪
i<λ Γi as a union of an increasing chain

of proper subgroups such that each Pψ is contained in some Γi. Since

|Sym0(κ)| = κ and λ > κ, we can assume that Sym0(κ) ⊂ Γ0. For ev-

ery A ∈ [κ]κ there exists i ∈ λ such that QeA
= PẽA

⊂ Γi, consequently∩
i∈λ GΓi

= ∅, and therefore gcl(κ) ≤ λ, which finishes our proof. 2Lemma 4.2

Definition 4.5. Let φ0 : κ → κ be the continuous increasing function

such that φ0(0) = ω and φ0(α + 1) = φ0(α) + α for all α ∈ κ. We set

Nα = Sym(φ0(α+ 1) \ φ0(α)), ~N = 〈Nα : α < κ〉, and STS0,S1
def
= STS0,S1, ~N .

Each branch ~t = 〈t(α)〉α∈κ of T ∈ Sacks( ~N) can be naturally identified

with an element of σ~t ∈ Pφ0 such that σ~t � (φ0(α + 1) \ φ0(α)) = t(α). We

also need the following

Definition 4.6. [κ]κ,κ denotes the set {A ⊂ κ : |A| = |κ \ A| = κ}. If

A ∈ [κ]κ,κ and σ ∈ Sym(κ), then σA is defined by σA(eA(α)) = eA(σ(α)). If

Γ is a subgroup of Sym(κ), then ΓA = {σA : σ ∈ Γ} and Γ(A) = {σ � A :

σ ∈ Γ, σ[A] = A}. 2

The next lemma is of crucial importance for the proof of the equality

cf∗(Sym(κ)) = cf(Sym(κ)) in V STS0,S1 for κ+-stationary subsets S0, S1 of

κ++.

Lemma 4.7. Let ψ : κ→ κ be a continuous increasing function. Then for

every T ∈ Sacks( ~N) there exists A ∈ [κ]κ,κ such that for every π ∈ Pψ there

exists S ≤ T such that σ~s � A = πA for all branches ~s of S.

Proof. Let B = {α ∈ κ : ψ(α) = φ0(α) = α}. Then B is obviously a club.

Consider D ∈ [C(T ) ∩B]κ such that D is a discrete subspace of κ and find

a club C ′ ⊂ C(T ) \D. Set A =
∪
α∈D(φ0(α+ 1) \ φ0(α)) =

∪
α∈D[α, α+ α)



14 SY-DAVID FRIEDMAN, LYUBOMYR ZDOMSKYY

and let h : κ→ A be the monotone bijection. We claim that for every β < κ

there exists α(β) ∈ D such that

(2) h[ψ(β), ψ(β + 1)) ⊂ [φ0(α(β)), φ0(α(β) + 1)) = [α(β), α(β) · 2).

Indeed, let us fix β and find α(β) such that h(ψ(β)) ∈ [α(β), α(β) ·2). Since

α(β) is a fixed point of φ0, it is indecomposable, i.e. it is not equal to a sum

of any two smaller ordinals. By our choice of D, α(β) > sup(D∩α(β)), and

hence o.t .(A∩φ0(α(β))) < φ0(α(β)) = α(β). Therefore o.t .(A∩α(β) · 2) =

o.t .(A∩φ0(α(β)))+α(β) = α(β), which means that h(α(β)) = α(β)·2. From

the above it follows that ψ(β) = o.t .(A∩h(ψ(β))) < o.t .(A∩α(β)·2) = α(β).

Since α(β) is a fixed point of ψ, we conclude that ψ(β+1) < α(β). In other

words, o.t .(A ∩ h(ψ(β + 1))) < o.t .(A ∩ φ0(α(β) + 1)), which implies the

inequality h(ψ(β + 1)) < φ0(α(β) + 1) and thus proves (2).

Now, let us fix π ∈ Pψ. A direct verification shows that S ∈ Sacks( ~N)

such that C(S) = C ′ and for every β ∈ κ and s ∈ S we have

h−1 ◦ s(α(β)) ◦ h � [ψ(α), ψ(α+ 1)) = π � [ψ(α), ψ(α+ 1))

is as required. �

Lemma 4.8. Suppose that λ = cf(Sym(κ)) < cf∗(Sym(κ)) and 〈Γi : i ∈ λ〉
is an increasing chain of proper subgroups of Sym(κ) such that Sym(κ) =∪
i<λ Γi. Then there exists a continuous increasing ψ : κ → κ such that

PA
ψ 6⊂ Γi(A) for all i < λ and A ∈ [κ]κ,κ.

Proof. Let us fix A0 ∈ [κ]κ,κ. The same argument as in the proof of [4,

Lemma 2.7] gives us a continuous increasing ψ : κ → κ such that PA0
ψ 6⊂

Γi(A0) for all i < λ. We claim that this ψ is as required. Indeed, let

A ∈ [κ]κ,κ, π ∈ Sym(κ) be such that π � A is the monotone bijection

between A and A0, and j ∈ λ be such that π ∈ Γi. It is easy to check that

if If PA
ψ ⊂ Γi(A) for some i, then PA0

ψ ⊂ Γmax{i,j}(A0), which contradicts

our choice of ψ. �

The next lemma can be proven by the same methods as Lemma 3.4.

Lemma 4.9. Suppose that 2κ = κ+ in V , κ++ = S0tS1 is a decomposition

into two κ+-stationary subsets, and G is STS0,S1-generic filter. For every

Π ⊂ Sym(κ) of size |Π| ≤ κ+ and every sequence 〈Γi : i < κ+〉 ∈ V [G] of

subgroups of Sym(κ) there is a κ+-closed unbounded set of ordinals η < κ++

for which Π ∈ V [Gη], 〈Γi ∩ V [Gη] : i < κ+〉 ∈ V [Gη], and for every A ∈
[κ]κ,κ ∩ V [Gη] and i < κ+ we have Γi(A) ∩ V [Gη] = (Γi ∩ V [Gη])(A).

Finally, we are in a position to prove the following theorem, which is the

main result of this section.
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Theorem 4.10. Let S0, S1, and G be as in Lemma 4.9. Then V [G] �
cf(Sym(κ)) = κ++.

Proof. Suppose to the contrary that V [G] � Sym(κ) = κ+. Let 〈Γi :

i < κ+〉 ∈ V [G] be an increasing chain of subgroups of Sym(κ) such that

Sym(κ) =
∪
i<κ+ Γi. By Theorem 3.2 and Lemma 4.2 we have V [G] �

cf∗(Sym(κ)) = κ++. Lemma 4.8 yields a continuous increasing ψ : κ → κ

such that for every A ∈ [κ]κ,κ and i < κ+ we have PA
ψ 6⊂ Γi(A). Fix

A∗ ∈ [κ]κ,κ and for every i < κ+ find πi ∈ Pψ such that πA∗
i ∈ PA∗

ψ \ Γi(A∗).

Observe that ΠA 6⊂ Γi(A) for any A ∈ [κ]κ,κ and i < κ+, where Π = {πi :

i < κ+}. (The condition πAi 6∈ Γi(A) holds at least starting from i such that

Γi contains an extension of the order-preserving bijection between A∗ and

A.)

Let η < κ++ be such an element of the κ+-closed unbounded subset

provided by Lemma 4.9 for 〈Γi : i < κ+〉 and Π for which Q̇η = Sacks( ~N),

i.e. η ∈ S1. We can additionally require A∗ ∈ V [Gη]. Suppose that H is the

Sacks( ~N)-generic filter over V [Gη] such that Gη+1 = Gη ∗ H and ~h is the

common branch of all trees in H. Applying Lemma 4.7 we conclude that

the set

{S ∈ Sacks( ~N) : ∃A ∈ [κ]κ,κ ∩ V [Gη] ∃π ∈ Π

(πA 6∈ (Γi ∩ V [Gη])(A) ∧ S 
 σ~h � A = πA)}

is dense for all i < κ+. Therefore for every i there exists Ai ∈ [κ]κ,κ ∩V [Gη]

and j(i) < κ+ such that σ = σ~h � Ai = πAi

j(i) 6∈ (Γi ∩ V [Gη])(Ai). Let i < κ+

be such that σ ∈ Γi. Then

(Γi ∩ V [Gη])(Ai) 63 πAi

j(i) = σ � Ai ∈ Γi(Ai) ∩ V [Gη],

which contradicts our choice of η. �

Now it is natural to ask whether we needed to employ Sacks( ~N) at all.

Question 4.11. Is cf(Sym(κ)) ≥ gcl(κ)?

The cardinal characteristic gcl(κ) seems to be a natural generalization

of the classical groupwise density number g introduced in [2] and it was

proved in [4] that cf(Sym(ω)) ≥ g. But the methods of [4] do not seem to

be applicable to Question 4.11.

5. Proof of Theorem 1.1

Without loss of generality, j = jE for some (κ, κ++)-extender E (such

embeddings will be called (κ, κ++)-extender ultrapowers in what follows) so
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that M = {j(f)(a) : f ∈ V, f : H(κ) → V, and a ∈ H(κ++)}, see, e.g, [13,

pp.381–384]2.

Claim 5.1. There exists a cardinal preserving forcing extension V ′ of V

such that GCH holds in V ′ and j can be extended to an elementary embed-

ding j′ : V ′ →M ′ satisfying the following conditions:

(i) H(κ++)V
′
= H(κ++)M

′
;

(ii) j′ is given by a (κ, κ++)-extender ultrapower so that M ′ = {j′(f)(a) :

f ∈ V ′, f : H(κ)V
′ → V ′, and a ∈ H(κ++)V

′};3

(iii) There exist disjoint κ+-stationary in V ′ (and hence in M ′) subsets

S0, S1 ∈ M ′ of κ++ such that S0 ∪ S1 = κ++, and a sequence 〈(S0
k , S

1
k) :

k ∈ κ〉, where S0
k and S1

k are disjoint ρ+
k -stationary subsets of ρ++

k for which

ρ++
k = S0

k∪S1
k, such that j′〈(S0

k , S
1
k) : k ∈ κ〉(κ) = (S0, S1). (Here ρk denotes

the k-th inaccessible cardinal below κ, k < κ.)

Proof. We define a forcing poset R as follows. Let R0 = {10}. For k ≤ κ we

denote by Ṡk a Rk-name for the poset Fn(ρ++
k , 2, ρ++

k ) adding one Cohen

subset to ρ++
k , see [15]. Proceeding this way along all inaccessible cardinals

≤ κ and using reverse Easton supports we define R. Let G be a Rκ-generic

over V , g be a Sκ = ṠGκ -generic over V [G], Gk = G∩Rk and gk be such that

Gk+1 = Gk ∗ gk for all k < κ. Note that gk is the characteristic function

of some subset of S0
k of ρ++. It is clear that S0

k as well as its complement

meet all subsets of ρ++
k of size ρ++

k which appear in V [Gk]. Since Rk+1 has

ρ++
k -c.c., each ρ+

k -closed unbounded in ρ++
k subset C ′ ∈ V [Gk+1] contains a

ρ+
k -closed unbounded in ρ++

k subset C ∈ V (the proof of [13, Lemma 22.25]

works in this case as well), and hence S0
k as well as ρ++

k \S0
k are ρ+

k -stationary

subsets of ρ++
k in V [Gk+1]. The rest of our forcing is ρ+++

k -closed, and hence

S0
k and ρ++

k \ S0
k remain ρ+

k -stationary in V [G ∗ g]. Let S0 be such that g is

the characteristic function of S0 and S1 = κ++ \ S0. Again, S0 and S1 are

κ+-stationary subsets of κ++ in V [G ∗ g].
j(R) is the iteration with reverse Easton supports of length j(κ) + 1.

A standard argument gives us that j(R)κ = Rκ, and hence G is j(R)κ-

generic over M and (H(κ)++)V [G] = (H(κ)++)M [G], see [7, Lemma 4.4].

From the above it follows that Fn(κ++, 2, κ++)V [G] = Fn(κ++, 2, κ++)M [G],

and therefore R = j(R)κ+1 and g is Fn(κ++, 2, κ++)-generic over M as well.

2What we actually use here is the following analogue of [13, Lemma 20.30]: A cardinal
κ is P2κ-hypermeasurable iff there exists a (κ, κ++)-extender E such that H(κ++) ⊂ UltE

and κ++ < jE(κ).
3We could assume here that the domain of f is still H(κ)V and a ∈ H(κ++)V , but

this is irrelevant.
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Suppose that there exists a j(R)-generic filter G′ = G ∗ g ∗ H ∗ h ∈
V [G ∗ g] over M such that H is a j(R)κ,j(κ)-generic over M [G ∗ g], h is

Sj(κ) = j(Ṡκ)G∗g∗H-generic over M [G∗ g ∗H], and j[G∗ g] ⊂ G′. Then j can

be extended to an elementary embedding j′ : V [G ∗ g] → M [G′] such that

j′(G ∗ g) = G′, see [6, Proposition 9.1]. Therefore j′〈S0
k : k ∈ κ〉(κ) = S0.

In addition, conditions (i) and (ii) hold by [6, Proposition 9.3]. Thus j′,

V ′ = V [G ∗ g], and M ′ = M [H] are as required.

It suffices to note that such H and h exist: the construction of H is

standard, see, e.g., fourth, fifth and sixth paragraphs of the proof of [7,

Theorem 4.2]; the existence of h follows from the κ+-distributivity of Sκ by

virtue of [6, Proposition 15.1], which implies that the subfilter h of Sj(κ)
generated by j[g] is as required. �

There is no loss of generality in assuming j = j′, V = V ′, and M = M ′.

We define a forcing poset P as follows. Let P0 = {10}. For k ≤ κ we denote

by Q̇k a Pk-name for STS0
k,S

1
k

4. Proceeding this way along all inaccessible

cardinals ≤ κ and using reverse Easton supports we define P. Observe that

Pk has ρ+
k -c.c., and hence S0

k , S
1
k are still ρ+

k -stationary in V Pk . From the

above and Theorem 4.10 we have that V P � cf(Sym(κ)) = κ++. Thus it

suffices to prove that κ is measurable in V P. In order to do this we shall

extend j to an elementary embedding from V P into M j(P).

j(P) is an iteration of length j(κ)+1 in M with reverse Easton support.

It is clear that j(P)κ = Pκ. Let G be a Pκ-generic filter over V . Since M

and V have the same H(κ++) and j〈(S0
k , S

1
k) : k ∈ κ〉(κ) = (S0, S1), we

have (κ++)M [G] = (κ++)V [G] (see [7, Lemma 4.4]) and j(P)κ+1 = P. Note

that j(P) = j(Pκ) ∗ j(Q̇κ). Let g be generic for Q̇G
κ over V [G]. We need to

find a suitable j(P)-generic filter over M in order to lift j to V [G ∗ g]. The

following claim is analogous to [1, Lemma 6.4].

Claim 5.2. If x ⊂ M [G] (resp. x ⊂ M [G ∗ g]), x ∈ V [G] (resp. x ∈
V [G ∗ g]), and V [G] � |x| ≤ κ (resp. V [G ∗ g] � |x| ≤ κ), then x ∈ M [G]

(resp. x ∈M [G ∗ g]).

Proof. We present the proof of the G ∗ g part only. The other part is

analogous. Without loss of generality, x is a set of ordinals. Let ẋ be a

P-name such that ẋG∗g = x. The κ+-c.c. of P yields a set of ordinals

y ∈ V of size |y| ≤ κ+ in V and a condition q ∈ P such that q 
 ẋ ⊂ y.

For every α ∈ y there exists a maximal in {p ∈ P : p ≤ q} antichain

Aα of conditions p such that p 
 α ∈ ẋ for every p ∈ Aα. Applying

4Here S0
κ = S0 and S1

κ = S1.
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Theorem 2.9, we conclude that |Aα| ≤ κ+ for every α ∈ y. It is clear that

〈Aα : α ∈ y〉 ∈ H(κ++), and hence 〈Aα : α ∈ y〉 ∈ (H(κ++))M . It suffices

to note that x = {α ∈ y : G ∗ g ∩ Aα 6= ∅}. �

In the same way as in the proof of [7, Theorem 4.2] (using Claim 5.2

instead of [11, Lemma 3]) we can find a j(P) � (κ, j(κ))-generic filter H ∈
V [G ∗ g] over M [G ∗ g]. Thus j[G] = G ⊂ G ∗ g ∗ H, and hence j lifts

to an embedding j∗ : V [G] → M [G ∗ g ∗ H] definable in V [G ∗ g], see [6,

Proposition 9.1]. Let M∗ denote M [G ∗ g ∗H].

We give Definition 5.3 and Claim 5.4 in full generality for any iteration

of Miller and Sacks forcings.

Definition 5.3. Let ρ be a strongly inaccessible cardinal and γ be an or-

dinal, S0, S1 be disjoint sets such that S0 ∪ S1 = γ, and ~A = 〈Aα : α < ρ〉
be a sequence of elements of ρ. Suppose that 〈(pα, Fα) : α ∈ ρ〉 is a gener-

alized fusion sequence for STS0,S1, ~A, q =
∧
α<ρ pα, and i ∈ ρ. We say that a

function σ : F → ρi+1 is i-properly situated on q (with respect to the fusion

sequence 〈(pα, Fα) : α ∈ ρ〉), if Fi ⊂ F , σ lies on some r ≤ q such that

r � ξ 
 σ(ξ) � i ∈ max Spliti(q(ξ)) for all ξ ∈ F , and σ(ξ)(i) = i for all

ξ ∈ F ∩ S0.

Claim 5.4. Let ρ, S0, S1, ~A, 〈(pα, Fα) : α ∈ ρ〉, q, i be such as in Defini-

tion 5.3, u ≤ q, F, T ∈ [γ]<ρ with F ⊂ T , and C ⊂ ρ be a club. Then there

exists v ≤F,i u satisfying the following conditions:

For every σ : F → ρi+1 which lies on v and has the property σ(ξ)(i) = i

for all ξ ∈ F ∩ S0, there exist j ∈ C and π : T ∪ Fj → ρ(j+1) such that

π(ξ) � (i + 1) = σ(ξ) for all ξ ∈ F , π lies on v, v|σ = v|π, and v|π is a

witness for π being j-properly situated on q with respect to 〈(pα, Fα) : α ∈ ρ〉.

Proof. Let us enumerate as {σζ : ζ ∈ η} all σ : F → ρi+1 with the property

σ(ξ)(i) = i for all ξ ∈ F ∩ S0 and which lie on some r ≤ u. Set u0 = u

and suppose that for some ζ < η and all ζ ′ < ζ we have already defined

uζ′ ∈ STS0,S1, ~A such that uζ′ ≤F,i uζ′′ for all ζ ′′ ≤ ζ ′ < ζ. If ζ is limit, we

set uζ =
∧
ζ′∈ζ uζ′ .

Let us consider the case ζ = ζ ′ + 1. If there is no r ≤ uζ′ such that σζ
′

lies on r = r|σζ′ , then we set uζ = uζ′ . Otherwise set rζ
′

0 = r, σζ
′

0 = σζ
′
,

and F ζ′
α = Fα

∪
T . Repeating the same argument as in Claim 2.11, we

can construct a sequence 〈rξ′α : α ∈ ρ〉 of elements of STS0,S1, ~A, a sequence

〈σζ′α : F ζ′
α → ρ<ρ|α < ρ〉, and sequences 〈µζ

′

α,ξ, ν
ζ′

α,ξ : α ∈ ρ, ξ ∈ F ζ′
α 〉 of

ordinals less than ρ fulfilling the items (i) − (v) of Claim 2.11. Claim 2.12
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yields a club Cζ′ ⊂ ρ such that µζ
′

α,ξ = νζ
′

α,ξ = α and σζ
′
α (ξ)(µζ

′

α,ξ) = α for

every α ∈ Cζ′ and ξ ∈ F ζ′
α ∩ S0. Let us fix jζ

′ ∈ Cζ′ ∩ C and set πζ
′
= σζ

′

jζ′

and rζ
′

= rζ
′

jζ′+1
. By Claim 2.11(iii), (iv) we have rζ

′|πζ′ = rζ
′

and rζ
′

is a witness for πζ
′

being jζ
′
-properly situated on q. Now let uζ be the

amalgamation of uζ′ and rζ
′
defined as follows:

(a) supp(uζ) = supp(rζ
′
).

(b) If ξ ∈ F , then uζ(ξ) is such that

rζ
′ � ξ 
 uζ(ξ) = (uζ′(ξ) \ uζ′(ξ)σζ′ (ξ))

∪
rζ

′
(ξ),

and for any condition c ≤ uζ � ξ incompatible with rζ
′ � ξ, c 
ξ uζ(ξ) =

uζ′(ξ).

(c) if ξ 6∈ F , then uζ(ξ) is such that rζ
′ � ξ 
 uζ(ξ) = rζ

′
(ξ), and for any

condition c ≤ uζ � ξ incompatible with rζ
′ � ξ, c 
ξ uζ(ξ) = uζ′(ξ).

By the definition of uζ we have

uζ |σζ
′
= rζ

′
= rζ

′ |πζ′ = (uζ |σζ
′
)|πζ′ = uζ |πζ

′

and uζ ≤F,i uζ′ .

We claim that v =
∧
ζ<η uζ is as required. Indeed, let σ : F → ρi+1

be such as in the formulation. Since v ≤ u, σ = σζ for some ζ ∈ η

and the construction of uζ+1 is nontrivial. From the above it follows that

v|σ ≤ uζ |σζ = uζ |πζ , consequently πζ lies on v and v|σ = v|πζ ≤ uζ |πζ = rζ .

Now it is easy to see that j = jζ and π = πζ are as required. �

Claim 5.5. Let ρ, S0, S1, and ~A be such as in Definition 5.3, and p ∈
STS0,S1, ~A. Then for every sequence 〈Dα : α ∈ ρ〉 of open dense subsets

of STS0,S1, ~A there exists a generalized fusion sequence 〈(pα, Fα) : α ∈ ρ〉
with p0 = p and such that, letting q =

∧
α∈ρ pα, for every limit i ∈ ρ and

σ : Fi → ρi+1 which is i-properly situated on q, σ lies on q and q|σ ∈ Di.

Proof. Take rα,j ∈ Dα in the construction of a fusion sequence from the

proof of Lemma 2.10 (the part before Claim 2.11) instead of demanding

that rα,j decides ż as a ground model object. The resulting fusion sequence

is easily seen to be as required. �

Let us come back to our main task, namely to extend j∗ to an ele-

mentary embedding j∗∗ : V [G ∗ g] → M∗[h] for some Qj(κ) := j∗(Q̇G
κ ) =

STM
∗

j∗(S0),j∗(S1),j∗( ~N)
-generic filter h overM∗ so that j∗∗ is definable in V [G∗g].

By [6, Proposition 9.1] it is enough to find such a Qj(κ)-generic h ∈ V [G∗ g]
over M∗ for which j∗[g] ⊂ h.

For every ξ < κ++ we denote by x(ξ) ∈ κκ ∩ V [G ∗ g] the (unique!)

branch through all trees in g(ξ) and let aξ = κ (resp. aξ = 0) for all ξ ∈ S0
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(resp. ξ ∈ S1). We claim that

h = {j∗(p)|σI : p ∈ g, I ∈M∗, I ⊂ j[κ++], |I| = κ},

where σI(j(ξ)) = x(ξ)̂ aξ for all j(ξ) ∈ I, is Qj(κ)-generic over M∗. The

proof below is a generalization of the “tuning fork” argument invented in

[11]. Let D̄ ∈ M∗ be an open dense subset of Qj(κ). Write D̄ as j∗(f)(ā),

where f has domainH(κ)V , f ∈ V [G], and ā ∈ H(κ++)V . There is no loss of

generality to assume that f(a) is open dense in Qκ := Q̇G
κ for all a ∈ H(κ)V .

Let us enumerate H(κ)V as 〈ak : k ∈ κ〉 and set Dk =
∩
k′≤k f(ak′).

Let p ∈ Qκ be arbitrary. Claim 5.5 yields a generalized fusion sequence

〈(pk, Fk) : k ∈ κ〉 such that p0 = p and, letting q =
∧
k∈κ pk, for every limit

k ∈ κ and σ which is k-properly situated on q, σ lies on q and q|σ ∈ Dk.

Let 〈F̄k̄ : k̄ ∈ j(κ)〉 and 〈p̄k̄ : k̄ ∈ j(κ)〉 be the results of applying j∗ to

〈Fk : k ∈ κ〉 and 〈pk : k ∈ κ〉 respectively. By elementarity of j∗, 〈(p̄k̄, F̄k̄) :

k̄ ∈ j(κ)〉 is a generalized fusion sequence for Qj(κ), q̄ := j∗(q) =
∧
k̄<j(κ) p̄k̄,

and there exists β̄ ∈ j(κ) so that for each limit ᾱ ≥ β̄ and σ̄ which is

ᾱ-properly situated on q̄, σ̄ lies on q̄ and q̄|σ̄ ∈ D̄. We can additionally

assume that β̄ > κ.

Fix u ≤ q and a club C ⊂ κ such that j(C) ∩ (κ, β̄] = ∅ (its existence is

established, e.g., in the proof of [11, Lemma 4]). Using Claim 5.4, we can

construct a fusion sequence 〈(uk, Tk) : k ∈ κ〉 with u0 = u satisfying the

following conditions:

(i) Fk ⊂ Tk;

(ii) For every σ : Tk → κk+1 which lies on uk and has the property

σ(ξ)(k) = k for all ξ ∈ Tk ∩ S0, there exist a limit ordinal m ∈ C \ (k + 1)

and π : Tk+1 ∪Fm → κ(m+1) such that π(ξ) � (k+1) = σ(ξ) for all ξ ∈ Tk, π

lies on uk+1, uk+1|σ = uk+1|π, and uk+1|π is a witness for π beingm-properly

situated on q with respect to 〈(pk, Fk) : k ∈ κ〉.
Let 〈T̄k̄ : k̄ ∈ j(κ)〉 and 〈ūk̄ : k̄ ∈ j(κ)〉 be the results of applying j∗ to

〈Tk : k ∈ κ〉 and 〈uk : k ∈ κ〉 respectively, v =
∧
k<κ uk, and v̄ = j∗(v) =∧

k̄<j(κ) ūk̄. By elementarity of j∗, for every σ̄ : T̄κ → j(κ)κ+1 which lies on

ūκ and has the property σ̄(ξ̄)(κ) = κ for all ξ̄ ∈ T̄κ ∩ j(S0), there exist a

limit ordinal m̄ ∈ j(C) \ (κ + 1) and π̄ : T̄κ+1 ∪ F̄m̄ → j(κ)(m̄+1) such that

π̄(ξ̄) � (κ + 1) = σ̄(ξ̄) for all ξ̄ ∈ T̄κ, π̄ lies on ūκ+1, ūκ+1|σ̄ = ūκ+1|π̄, and

ūκ+1|σ̄ is a witness for π̄ being m̄-properly situated on q̄ with respect to

〈(p̄k̄, F̄k̄) : k̄ ∈ j(κ)〉.
Since p and u ≤ q were chosen arbitrarily, we can assume that v ∈ g.

Observe that T̄κ =
∪
k∈κ j[Tk] ⊂ j[κ++], |T̄κ| = κ, and T̄κ ∈ M∗. The

elementarity of j∗ implies that σ̄ := σT̄κ
lies on j∗(w) for any w ∈ g. In
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particular, σ̄ lies on ūk = j∗(uk) for all k ∈ κ, and hence it lies on ūκ =∧
k∈κ ūk as well. Therefore we can find m̄ ∈ j(C) \ (κ + 1) and π̄ : T̄κ+1 ∪

F̄m̄ → j(κ)(m̄+1) as above, i.e. ūκ+1|σ̄ is a witness for π̄ being m̄-properly

situated on q̄ with respect to 〈(p̄k̄, F̄k̄) : k̄ ∈ j(κ)〉. By the construction of

〈(pk, Fk) : k ∈ κ〉, elementarity of j∗, the equalities j(C) ∩ (κ, β̄) = ∅ and

m̄ ∈ j(C) \ (κ+ 1), and our choice of β̄, we conclude that π̄ � F̄m̄ lies on q̄

and q̄|(π̄ � F̄m̄) ∈ D̄. On the other hand,

q̄|(π̄ � F̄m̄) ≥ ūκ+1|π̄ = ūκ+1|σ̄ ≥ v̄|σ̄ = j∗(v)|σT̄κ
∈ h,

which means that h∩ D̄ 6= ∅ and thus finishes the proof of Theorem 1.1. 2

Remark 5.6. 1. To the best knowledge of the authors there are essen-

tially three other different forcing extensions V P of V which preserve the

measurability of κ and kill the GCH at κ under the assumption that κ is

P2κ-hypermeasurable, see [6, § 24], [11], and [7, § 4]. In all three cases

we have cf(Sym(κ)) = κ+ in V P . The historically first of them is due to

Woodin [6, § 24]. His P can be written as P0 ∗P1 ∗P2, where P0 is iteration

of Cohen posets below κ with reverse Easton support, and thus |P0| = κ

and P0 has κ-c.c.; P1 is the poset adding κ++-many Cohen subsets of κ, and

P2 adds no new subsets of κ. It is clear that V P0∗P1 � cf(Sym(κ)) = κ+ (see

the last paragraph in [22, p. 894]), and every forcing which does not add

new subsets of κ cannot enlarge cf(Sym(κ)).

In forcing extensions constructed in [11] and [7] the equality d(κ) = κ+

holds, and it is well-known (the proof of [21, Proposition 1.4] works for every

regular κ) that cf(Sym(κ)) ≤ d(κ) for every regular κ.

2. It is known [22] that the equality cf(Sym(κ)) = κ++ (and much

more) is consistent for every inaccessible κ. But the authors were not able

to lift elementary embeddings to forcing extensions used in [22]5 assuming

considerably less than supercompactness. However such a possibility is not

formally excluded. On the other hand, applying the methods developed in

[10] to forcing extensions from [22] we could obtain the following result:

Suppose 0] exists. Then there is an inner model in which cf(Sym(κ)) =

κ++ for every regular cardinal κ of the form ℵ2α.

It is worth mentioning here that for every cardinal κ the inequality

cf(Sym(κ)) > κ+ implies cf(Sym(κ+)) ≤ cf(Sym(κ)), and it is not known

even how to obtain cf(Sym(κ)) > κ+ at two consecutive κ simultaneously,

see [22].

5The forcing posets used in [22] were developed in [17, § 2,3]
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3. In order to show that j(P)κ+1 = P in the proof of Theorem 1.1 we

needed suitable stationary sets S0, S1 and 〈S0
k , S

1
k : k ∈ κ〉. Instead of using

the auxiliary forcing introducing such sets we could apply the same inner

model argument as in the proof of [9, Theorem 11].
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