
ON WELL-SPLITTING POSETS

DUŠAN REPOVŠ AND LYUBOMYR ZDOMSKYY

Abstract. We introduce a class of proper posets which is preserved by
countable support iterations, includes ωω-bounding, Cohen, Miller, and
Mathias posets associated to filters with the Hurewicz covering proper-
ties, and has the property that the ground model reals remain splitting
and unbounded in corresponding extensions.

1. Introduction

The famous Roitman problem asks whether it is consistent, relative to
the consistency of ZFC, that d = ω1 < a. Here, d is the minimal cardinality
of a subfamily of ωω which is dominating with respect to the preorder re-
lation ≤∗ on ωω, where a ≤∗ b for a, b ∈ ωω means that a(n) ≤ b(n) for all
but finitely many n; a is the minimal cardinality of a mad subfamily A of
[ω]ω, i.e., a subfamily whose distinct elements have finite intersection and
which is maximal with respect to this property.

Without the restriction d = ω1, the consistency of d < a has been
established in a breakthrough work of Shelah [12]. Regarding the original
Roitmann problem, even the following weaker version raised in [4] remains
open: Is it consistent that s = b = ω1 < a? Here, s is the minimal
cardinality of a splitting family, i.e., a family S ⊂ [ω]ω such that for every
X ∈ [ω]ω there exists S ∈ S for which both S ∩X and X \ S are infinite;
b is the minimal cardinality of a subfamily of ωω which is unbounded with
respect to ≤∗. It is well-known that max{b, s} ≤ d and the strict inequality
holds, e.g., in the Cohen model (see [2, 13] for more information on these
and many other cardinal characteristics of the continuum).

In this note we isolate the class of well-splitting posets (see the next
section for the definition) with properties described in the abstract, aiming
at the solution of the aforementioned weak version of Roitman’s problem.
This class includes among others Mathias posets associated to filters on ω
with the Hurewicz covering property. This motivates the following

Question 1.1. (CH) Can every mad family be destroyed by a well-splitting
poset? In particular, given a mad family A, is there a well-splitting poset
P such that in V P, {ω \A : A ∈ A} can be enlarged to a Hurewicz filter, or
more generally to a filter, whose Mathias forcing is well-splitting?
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By Theorem 2.7 proved in the next section, the affirmative answer to
Question 1.1 would allow to construct a model of b = s = ω1 < a = ω2.

Recall from [8] that a topological space X is said to have the Hurewicz
covering property (or is simply called Hurewicz) if for every sequence 〈Un :
n ∈ ω〉 of open covers of X there exists a sequence 〈Vn : n ∈ ω〉 such that
each Vn is a finite subfamily of Un and the collection {∪Vn : n ∈ ω} is a
γ-cover of X, i.e., the set {n ∈ ω : x 6∈ ∪Vn} is finite for each x ∈ X. It
is clear that σ-compact spaces are Hurewicz, but by [9, Theorem 5.1] there
exist also non-σ-compact sets of reals having the Hurewicz property. We
consider each filter on ω with the subspace topology inherited from P(ω),
the latter being a topological copy of the Cantor space 2ω via characteristic
functions. As it was proved in [7], the Mathias forcing associated to a filter
F is almost ωω-bounding in terminology of [11] if and only if F is Hurewicz.
It is worth mentioning here that in general, almost ωω-bounding posets can
make ground model reals non-splitting, see, e.g., [11, Lemma 1.14], so by
Lemma 2.1 almost ωω-bounding posets do not have to be well-splitting.

Built on the proof of [3, Theorem 3.1], it is established in [14] that under
CH, for every mad family A, the collection {ω \A : A ∈ A} can be enlarged
to an ultrafilter F with a certain covering property which is weaker (but
similar) to the Hurewicz one, and whose Mathias forcing does not produce
any new real dominating the given ground model unbounded subset. The
construction in [14] cannot be directly used to answer Question 1.1 since
by Lemma 2.1 the Mathias forcing for ultrafilters cannot be well-splitting
because it adds an unsplit real. However, it is natural to ask how far can
we weaken the Hurewicz property of a filter so that its Mathias forcing is
still well-splitting.

Question 1.2. Let F be a filter on ω whose Mathias forcing is well-splitting.
Is then F Hurewicz? In other words, are being well-splitting and almost
ωω-bounding equivalent for such posets?

2. Well-splitting posets

Throughout this section we denote by E0 and E1 the sets of all even and
odd natural numbers, respectively. A strictly increasing function f ∈ ωω is
said to well-split a set M if the sets {n ∈ Ej : |[f(n), f(n + 1)) ∩ Y | ≥ 2}
are infinite for all Y ∈M ∩ [ω]ω and j ∈ 2.

We shall say that a poset P is well-splitting if the following is satisfied:
Whenever P ∈ M , where M is a countable elementary submodel of H(θ)
for any sufficiently large θ, p ∈ M ∩ P and f well-splits M , then there is
some q ≤ p which is (M,P)-generic and such that q forces f to well-split
M [Γ], where Γ is the canonical name for P-generic filter.

Lemma 2.1. Supose that P is well-splitting and G is P-generic. Then
V ∩ [ω]ω is splitting and V ∩ ωω is unbounded in V [G].

Proof. To see that ωω∩V is unbounded, let us fix a P-name ḣ for an element
of ω↑ω (the family of all strictly increasing functions in ωω), a countable

elementary submodel M of H(θ) such that P, ḣ ∈ M , and p ∈ P ∩ M .
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Suppose that f well-splits M and q ≤ p is any (M,P)-generic condition

which forces f to well-split M [Γ]. Let ḣ1 ∈M be a P-name for the following

function: ḣ1(0) = 0, ḣ1(n+ 1) = ḣ(ḣ1(n)) + 1 for all n ∈ ω. It follows from
the above that q forces the set

İ := {n ∈ E0 : |[f(n), f(n+ 1)) ∩ range(ḣ1)| ≥ 2}

to be infinite. Let G 3 q be P-generic and set I = İG, h = ḣG, and h1 = ḣG1 .
In V [G], for every i ∈ I we can find ni ∈ ω such that h1(ni), h1(ni + 1) ∈
[f(i), f(i+ 1)). Thus h1(ni + 1) = h(h1(ni)) < f(i+ 1) ≤ f(h1(ni)), i.e.,

{h1(ni) : i ∈ ω} ⊂ {k : h(k) < f(k)},

and hence h does not dominate f . Summarizing the above, we conclude that
for any p ∈ P and any P-name ḣ for an element of ω↑ω, there is a stronger
condition q and f ∈ ω↑ω ∩ V such that q forces the set {k : ḣ(k) < f(k)}
to be infinite. This precisely means that ω↑ω ∩ V is unbounded in V [G] for
any P-generic filter G.

To prove that [ω]ω∩V is splitting, let us fix a P-name Ẏ for an element of
[ω]ω, a countable elementary submodel M of H(θ) such that P, Ẏ ∈M , and
p ∈ P ∩M . Suppose that f well-splits M and q ≤ p is any (M,P)-generic
condition which forces f to well-split M [Γ]. Then q forces the sets

İj :=
⋃
n∈Ej

[f(n), f(n+ 1)) ∩ Ẏ

to be infinite for all j ∈ 2. Since the sets
⋃
n∈Ej [f(n), f(n + 1)), j ∈ 2, are

disjoint, infinite, and both are in V , this completes our proof. �

It is clear that each well-splitting poset is proper and an iteration of
finitely many well-splitting posets is again well-splitting. Next, we shall es-
tablish that being well-splitting is also preserved by countable support itera-
tions. The proof of the following lemma is similar to that of [1, Lemma 2.8],
with some additional control on the sequence 〈ṗi : i ∈ ω〉.

Let us make a couple of standard conventions regarding our notation.
Whenever 〈Pα, Q̇α : α < δ〉 is an iterated forcing construction, we denote
by P[α0,α1) a Pα0-name for the quotient poset Pα1/Pα0 , viewed naturally
as an iteration over the ordinals ξ ∈ α1 \ α0. For a Pα0-generic G and a
Pα1-name τ , where α0 ≤ α1, we denote by τG the PG[α0,α1)

-name in V [G]
obtained from τ by partially interpreting it with G. This allows us to speak
about, e.g., PG[α1,α2)

for α0 ≤ α1 ≤ α2 ≤ δ and a Pα0-generic filter G. For
a poset P we shall denote by ΓP the standard P-name for P-generic filter.
We shall write Γα instead of ΓPα whenever we work with an iterated forcing
construction which is clear from the context. Also, Γ[α0,α1) is a Pα1-name
whose interpretation with respect to a Pα0-generic filter G is ΓPG

[α0,α1)
, which

is an element of V [G].

Lemma 2.2. If 〈Pα, Q̇α : α < δ〉 ∈ M is a countable support iteration of
well-splitting (hence proper) posets, then P is also well-splitting.
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Proof. The proof is by induction on δ. The successor case is clear. So
assume that δ is limit, p ∈ Pδ, and M 3 Pδ, p is a countable elementary
submodel of H(θ) for a sufficiently large θ. Pick an increasing sequence
〈δi : i ∈ ω〉 cofinal in δ∩M , with δi ∈M for all i ∈ ω. Let also {Di : i ∈ ω}
and {Ẏi : i ∈ ω} be an enumeration of all open dense subsets of Pδ and all
Pδ-names for an infinite subset of ω which are elements of M , respectively.
We can assume without loss of generality, that for every Pδ-name Ẏ ∈ M
for an element of [ω]ω the set {i ∈ ω : Ẏ = Ẏi} is infinite. Suppose that f
well-splits M . We will define by induction on i ∈ ω a condition qi ∈ Pδi and
Pδi-name ṗi, ṅ

0
i , ṅ

1
i such that

(i) ṗi is a name for an element of Pδ, q0 
δ0 ṗ0 ≤ p̌, and qi+1 
δi+1

ṗi+1 ≤ ṗi;
(ii) qi+1 � δi = qi;

(iii) qi is (M,Pδi)-generic;
(iv) ṅ0

i , ṅ
1
i are Pδi-names for natural numbers bigger than i; and

(v) qi forces over Pδi that “ṗi � δi ∈ Γδi , ṗi ∈ Di ∩M , and ṗi forces over

Pδ that ṅji ∈ Ej and |[f(ṅji ), f(ṅji + 1)) ∩ Ẏi| ≥ 2 for all j ∈ 2”.

Suppose now that we have constructed objects as above and set q =
⋃
i∈ω qi.

Since qi = q � δi forces over Pδi that ṗi � δi ∈ Γδi and qi+1 
δi+1
ṗi+1 ≤ ṗi for

all i, a standard argument yields that q is (M,Pδ)-generic and q 
δ ṗi ∈ Γδ
for all i ∈ ω, see, e.g., the proof of [1, Lemma 2.8] for details. Then q forces
that τ0 := {n ∈ E0 : |[f(n), f(n + 1)) ∩ Ẏ | ≥ 2} and τ1 := {n ∈ E1 :
|[f(n), f(n + 1)) ∩ Ẏ | ≥ 2} are infinite for any Pδ-name Ẏ for an infinite
subset of ω: Given Pδ-generic G 3 q, note that pi := ṗGi ∈ G for all i.
Now (v) implies nji ∈ τGj for all j ∈ 2 and i ∈ ω such that Ẏ = Ẏi, where

nji = (ṅji )
G.

Returning now to the inductive construction, assume that qi ∈ Pδi , Pδi-
names ṗi, ṅ

0
i , ṅ

1
i satisfying (i)-(v) have already been constructed. Let Gδi

be Pδi-generic containing qi and pi = ṗ
Gδi
i ∈ Pδ ∩ M . By (v) we know

that pi � δi ∈ Gδi . In V [Gδi ] let p′i ∈ M ∩ Di+1 be such that p′i ≤ pi and
p′i � δi ∈ Gδi . By the maximaility principle we get a Pδi-name ṗ′i for a
condition in Pδ such that qi 
δi “ṗ′i ≤ ṗi, ṗ

′
i ∈M ∩Di+1, and ṗ′i � δi ∈ Γδi”.

Given a Pδi+1
-generic filter R, in V [R] construct a decreasing sequence

〈rm : m ∈ ω〉 ∈ M [R] of conditions in PR[δi+1,δ)
below (ṗ′i � [δi+1, δ))

R such

that for some am ∈ [ω]m we have rm 
PR
[δi+1,δ)

“am is the set of the first m

elements of Ẏi+1”. By the maximality principle we get a sequence 〈ρm : m ∈
ω〉 ∈M of Pδi+1

-names for elements of P[δi+1,δ) such that


δi+1

[
ρm+1 ≤ ρm ∧ ∃νm ∈ [ω]m (ρm 
P[δi+1,δ)

“νm is the set of the first m many elements of Ẏi+1
′′)
]
.

In the notation used above, let Ż be a Pδi+1
-name for

⋃
m∈ω νm and note

that Ż is a Pδi+1
-name for an infinite subset of ω.

Let again Gδi be Pδi-generic containing qi and p′i = (ṗ′i)
Gδi ∈ Pδ ∩M ∩

Di+1. It also follows from the above that p′i � δi ∈ Gδi . For a while we shall
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work in V [Gδi ]. Since PGδi[δi,δi+1)
is well-splitting in V [Gδi ] by our inductive

assumption, there exists a (M [Gδi ],P
Gδi
[δi,δi+1)

)-generic condition π ≤ p′i �

[δi, δi+1)
Gδi such that

π 

P
Gδi
[δi,δi+1)

τj := {n ∈ Ej : |[f(n), f(n+ 1)) ∩ ŻGδi | ≥ 2}

is infinite for all j ∈ 2. Let H be PGδi[δi,δi+1)
-generic over V [Gδi ] containing π

and nji+1 ∈ τHj \ (i+ 2), where j ∈ 2. In V [Gδi ∗H] pick m ∈ ω such that

rm := ρ
Gδi∗H
m 


P
Gδi
∗H

[δi+1,δ)

ŻGδi∗H∩f(max
j∈2

(nji+1)+1) = Ẏ
Gδi∗H
i+1 ∩f(max

j∈2
(nji+1)+1).

In M [Gδi ] pick a condition s ∈ M [G] ∩ H below p′i � [δi, δi+1)
Gδi forcing

the above properties of nji+1, τj, and ρm, where j ∈ 2. By the maximality

principle we obtain PGδi[δi,δi+1)
-names ṡ and ρ in M [Gδi ] for element of PGδi[δi,δi+1)

and PGδi[δi+1,δ)
, and names ṅji+1 for natural numbers such that

π 
P[δi,δi+1
)
Gδi

ṡ ∈M [Gδi ] ∩ Γ
Gδi
[δi,δi+1)

∧ ṡ ≤ ṗ′ � [δi, δi+1)
Gδi ∧ ṡ 
P[δi,δi+1

)
Gδi

ρ ≤ ṗ′ � [δi+1, δ)
Gδi ∧ ρ 
P[δi+1

,δ)
Gδi

(1)

∀j ∈ 2 |[f(ṅji+1), f(ṅji+1 + 1)) ∩ Ẏi+1| ≥ 2.

Using the maximality principle again, we can find Pδi-names for the objects
appearing in equation (1) such that qi forces this equation. We shall use
the same notation for these names. It remains to set qi+1 = qiˆπ and
ṗi+1 = ṗ′i � δiˆ ṡˆρ and note that they together with the names ṅji+1, j ∈ 2,
satisfy (i)-(v) for i+ 1. �

By a Miller tree we understand a subtree T of ω<ω consisting of increasing
finite sequences such that the following conditions are satisfied:

• Every t ∈ T has an extension s ∈ T which is splitting in T , i.e.,
there are more than one immediate successors of s in T ;
• If s is splitting in T , then it has infinitely many successors in T .

The Miller forcing is the collection M of all Miller trees ordered by inclusion,
i.e., smaller trees carry more information about the generic. This poset was
introduced in [10]. For a Miller tree T we shall denote by Split(T ) the set of
all splitting nodes of T . Split(T ) may be written in the form

⋃
i∈ω Spliti(T ),

where

Spliti(T ) = {t ∈ Split(T ) : |{s ∈ Split(T ) : s ( t}| = i}.
If T0, T1 ∈ M, then T1 ≤i T0 means T1 ≤ T0 and Spliti(T1) = Spliti(T0). It
is easy to check that for any sequence 〈Ti : i ∈ ω〉 ∈ Mω, if Ti+1 ≤i Ti for
all i, then

⋂
i∈ω Ti ∈M.

For a node t in a Miller tree T we denote by Tt the set {s ∈ T : s is
compatible with t}. It is clear that Tt is also a Miller tree.

Lemma 2.3. The Miller forcing M is well-splitting.



6 D. REPOVŠ AND L. ZDOMSKYY

Proof. Let N be an elementary submodel of H(θ) and T ∈M∩N . Let {Ẏi :
i ∈ ω} be an enumeration of all M-names for infinite subsets of ω which are
elements of N , in which every such name appears infinitely often. Let also
{Di : i ∈ ω} be an enumeration of all open dense subsets of M which belong
to N . Suppose that f ∈ ωω well-splits N . We shall inductively construct a
sequence 〈Ti : i ∈ ω〉 such that Ti+1 ≤i Ti and T∞ =

⋂
i∈ω Ti is as required.

Set T0 = T and suppose that Ti has already been constructed. Moreover,
we shall assume that (Ti)t ∈ N for all t ∈ Spliti(Ti). Let {tj : j ∈ ω}
be a bijective enumeration of Spliti(Ti). For every j and k ∈ ω such that
tj ˆk ∈ Ti fix a decreasing sequence 〈Si,j,kn : n ∈ ω〉 ∈ N of elements of Di

below (Ti)tj ˆ k such that each Si,j,kn decides some ai,j,kn ∈ [ω]n to be the set

of the first n many elements of Ẏi. Thus Y i,j,k :=
⋃
n∈ω a

i,j,k
n ∈ N ∩ [ω]ω,

and hence there are Ep 3 mi,j,k
n,p ≥ i such that

|[f(mi,j,k
n,p ), f(mi,j,k

n,p + 1)) ∩ Y i,j,k
n | ≥ 2

for all p ∈ 2. Let n(i, j, k) be such that

Y i,j,k ∩max
p∈2

f(mi,j,k
n(i,j,k),p + 1) ⊂ ai,j,kn(i,j,k)

and set

Ti+1 =
⋃
{Si,j,kn(i,j,k) : j ∈ ω, tj ˆk ∈ Ti}.

This completes our inductive construction of the fusion sequence 〈Ti : i ∈
ω〉. We claim that T∞ is as required. First of all, T∞ is (N,M)-generic

because the collection
⋃
{Si,j,kn(i,j,k) : j ∈ ω, tj ˆk ∈ Ti} is a subset of Di and

predense below Ti+1 (and hence also below T∞). Now fix a M-name Ẏ ∈ N
for an element of [ω]ω and suppose to the contrary, that there exist i ∈ ω,
p ∈ 2, and R ≤ T∞ that forces |[f(m), f(m+1))∩Ẏ | ≤ 1 for all Ep 3 m ≥ i.

Enlarging i, if necessary, we may assume that Ẏ = Ẏi. Passing to a stronger
condition, if necessary, we may assume that R ≤ (Ti)tj ˆ k for some i, j ∈ ω
and k such that tj ˆk ∈ Ti. But then R ≤ Si,j,kn(i,j,k), and the latter condition

forces

|[f(mi,j,k
n,p ), f(mi,j,k

n,p + 1)) ∩ Y i,j,k
n | = |[f(mi,j,k

n,p ), f(mi,j,k
n,p + 1)) ∩ Ẏ | ≥ 2,

which leads to a contradiction since mi,j,k
n,p has been chosen to be above i.

This contradiction completes our proof. �

Every filter F gives rise to a natural forcing notion MF introducing a
generic subset X ∈ [ω]ω such that X ⊂∗ F for all F ∈ F as follows: MF
consists of pairs 〈s, F 〉 such that s ∈ [ω]<ω, F ∈ F , and max s < minF . A
condition 〈s, F 〉 is stronger than 〈t, G〉 if F ⊂ G, s is an end-extension of t,
and s \ t ⊂ G. MF is usually called Mathias forcing associated with F . In
the proof of the next lemma we shall work with clopen subsets of P(ω) of
the form ↑ s = {X ⊂ ω : s ⊂ X}, where s ∈ [ω]<ω.

Lemma 2.4. Suppose that F is a Hurewicz filter. Then MF is well-
splitting.
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Proof. Suppose that f well-splits M ≺ H(θ), and F ∈ M . We shall prove
that any 〈s0, F0〉 ∈ MF ∩M forces that f well-splits M [Γ]. This suffices
because all conditions in MF are (M,MF)-generic. Suppose, contrary to
our claim, that there exists 〈s1, F1〉 ≤ 〈s0, F0〉 such that

〈s1, F1〉 
 ∃σ∃j∃n0

(
σ ∈M ∩ [ω]ω ∧ j ∈ 2 ∧ n0 ∈ ω ∧

∧∀n ∈ Ej \ n0 (|[f(n), f(n+ 1)) ∩ σ| ≤ 1)
)
.

Replacing 〈s1, F1〉 with a stronger condition, if necessary, we may fix j ∈ 2,
n0 ∈ ω, and a MF -name Ẏ ∈M for an infinite subsets of ω such that

〈s1, F1〉 
 ∀n ∈ Ej \ n0 (|[f(n), f(n+ 1)) ∩ Ẏ | ≤ 1).

Let ġ ∈ M be a name for a function such that ġ(n) is forced to be the nth
element of Ẏ . For every m ∈ ω let Sm be the set of those s ∈ [F0 \(max s1 +
1)]<ω such that there exist Fs ∈ F such that 〈s1 ∪ s, Fs〉 forces ġ(m + 1)
to be equal to some ls,m ∈ ω. It is clear that for every F ∈ F there exists
s ∈ Sm such that s ⊂ F . In other words, Um := {↑ s : s ∈ Sm} is an open
cover of F . Since F is Hurewicz, there exists for every m a finite Vm ⊂ Um
such that {

⋃
Vm : m ∈ ω} is a γ-cover of F . Let Tm ∈ [Sm]<ω be such that

Vm = {↑ s : s ∈ Tm} and h(m) = max{ls,m : s ∈ Tm} + 1. By elementarity,
we can in addition assume that 〈Um,Vm,Sm, Tm : m ∈ ω〉 ∈ M as well as
h ∈M .

Set h′(0) = h(0) and h′(m + 1) = h(h′(m)) for all m ∈ ω. Let m0

be such that for every m ≥ m0 there exists s ∈ Sm ∩ P(F1). Set n1 =
max{n0, h

′(m0)}. Since f well-splits M , the set Ij := {n ∈ Ej : |[f(n), f(n+
1))∩range(h′)| ≥ 2} is infinite, in particular it contains some n2 > n1. Thus
there exists m ∈ ω such that

f(n2) ≤ h′(m) < h′(m+ 1) = h(h′(m)) < f(n2).

f is strictly increasing, hence by the definition of n1 we have that m > m0,
and therefore there exist s ∈ Sh′(m) ∩P(F1). Thus there exists Fs ∈ F such
that

〈s1 ∪ s, Fs〉 
 ġ(h′(m) + 1) = ls,h′(m) < h(h′(m)) < f(n2).

Also, 〈s1 ∪ s, Fs〉 
 ġ(h′(m)) ≥ h′(m) ≥ f(n2). It follows from the above
that 〈s1∪ s, Fs〉 forces that [f(n2), f(n2) + 1) contains at least two elements
of Ẏ , namely the h′(m)-th and h′(m)+1-st. On the other hand, 〈s1∪s, Fs〉 is
compatible with 〈s1, F1〉 because s ⊂ F1 and max s1 < min s, n2 > n0, n2 ∈
Ej, and 〈s1, F1〉 forces |[f(n), f(n+ 1)) ∩ Ẏ | ≤ 1 for all n ∈ Ej \ n0. In this
way two compatible conditions 〈s1, F1〉 and 〈s1 ∪ s, F 〉 force contradictory
facts, which is impossible. This completes our proof. �

Let us mention that there is another property of posetsMF for Hurewicz
filters F which is preserved by finite support iterations and which guarantees
that the ground model reals remain splitting and unbounded, see [5, Prop.
84].

Corollary 2.5. The Cohen forcing is well-splitting.
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Proof. The Cohen forcing is isomorphic to any countable atomless poset, in
particular to MFr, where Fr is the Fréchet filter consisting of all cofinite
subsets of ω. It remains to note that Fr is Hurewicz. �

Recall that a poset P is ωω-bounding if ωω ∩ V is dominating in V P.

Lemma 2.6. Every proper ωω-bounding poset P is well-splitting.

Proof. Let us fix a P-name Ẏ for an element of [ω]ω, a countable elementary
submodel M of H(θ) such that P, Ẏ ∈ M , and p ∈ P ∩M . Suppose that
f well-splits M and q ≤ p is any (M,P)-generic condition. Let ġ ∈ M
be a name for the function in ω↑ω which is the increasing enumeration of
Ẏ . Since P is ωω-bounding and q is (M,P)-generic, there exist k0 ∈ ω and
h ∈ M ∩ ω↑ω such that q 
 “ġ(k) < h(k) for all k ≥ k0”. Let h1 ∈ M be
the following function: h1(0) = 0, h1(n+ 1) = h(h(h1(n))) + 1 for all n ∈ ω.
Let G be P-generic containing q and Y, g be the evaluations of Ẏ , ġ with
respect to G, respectively. It follows from the above that the set

I := {i ∈ E0 : |[f(i), f(i+ 1)) ∩ range(h1)| ≥ 2}
is infinite. For every i ∈ I we can find ni ∈ ω such that h1(ni), h1(ni + 1) ∈
[f(i), f(i+ 1)). Thus if i ≥ k0 then we have

f(i) ≤ h1(ni) ≤ g(h1(ni)) < h(h1(ni)) ≤ g(h(h1(ni))) <

< h(h(h1(ni))) = h1(ni + 1) < f(i),

and hence |[f(i), f(i+1))∩Y | ≥ 2 because g(h1(ni)), g(h(h1(ni))) belong to
the latter intersection. Therefore in V [G] we have I ⊂ {i ∈ E0 : |[f(i), f(i+
1)) ∩ Y | ≥ 2}. Since G 3 q was chosen arbitrarily, we can conclude that q
forces the set

{n ∈ E0 : |[f(n), f(n+ 1)) ∩ Ẏ | ≥ 2}
to be infinite, which completes our proof. �

Summarizing the results proved in this section we get the following

Theorem 2.7. The class of all well-splitting posets preserves ground model
reals splitting and unbounded, is closed under countable support iterations,
and includes ωω-bounding, Cohen, Miller, and Mathias forcing associated
to filters with the Hurewicz covering properties.
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