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In this paper we formulate three problems concerning topological properties of sets genera-
ting Borel non-σ-compact groups. In the case of a concrete Fσδ-subgroup of {0, 1}ω×ω this gives
an equivalent reformulation of the Scheepers diagram problem.

Ë. Ñ. Çäîìñêèé. Ìîæåò ëè áîðåëåâñêàÿ ãðóïïà ïîðîæäàòüñÿ ïîäïðîñòðàíñòâîì Ãóðå-

âè÷à? // Ìàòåìàòè÷íi Ñòóäi¨. � 2006. � Ò.25, �2. � C.219�224.

Â äàííîé ðàáîòå ìû ôîðìóëèðóåì òðè ïðîáëåìû î òîïîëîãè÷åñêèõ ñâîéñòâàõ ïðî-
ñòðàíñòâ ïîðîæäàþùèõ áîðåëåâñêèå íå σ-êîìïàêòíûå ãðóïïû. Â ñëó÷àå êîíêðåòíîé
Fσδ -ïîäãðóïïû {0, 1}ω×ω ìû ïîëó÷àåì ýêâèâàëåíòíóþ ôîðìóëèðîâêó îäíîé ïðîáëåìû
Ì. Øèïåðçà.

Introduction. The Hurewicz property was introduced in [5] as a cover counterpart of the

σ-compactness: a topological space X is said to have this property, if for every sequence

(un)n∈ω of open covers of X there exists a sequence (vn)n∈ω, where each vn is a finite subset

of un such that each element x ∈ X belongs to
⋃

vn for all but finitely many n ∈ ω. It is easy
to see that each σ-compact space is Hurewicz (= has the Hurewicz property). The converse

statement is known to fail in ZFC, see [6]. By a Borel space we mean a separable metrizable

space which is a Borel subset of its completion. This paper is devoted to problems close to

the following one.

Problem 1. Can a Borel non-σ-compact group be generated by its Hurewicz subspace?

This problem is especially interesting for the concrete subgroup G of {0, 1}ω×ω (standardly

endowed with the coordinatewise addition modulo 2) being equivalent to the �Hurewicz�

part of the Scheepers diagram problem (see [6, Problems 1,2], [14, Problems 4.1,4.2], [12,

Problem 1], and [13, Problem 3.2]), where

G =
{

x ∈ {0, 1}ω2

: xi,j = 0 for every j ∈ ω and all but finitely many i
}

.

In order to formulate the Scheepers diagram problem we have to recall some definitions.

M. Scheepers in his paper [10] introduced a long list of new properties looking similar to

the Hurewicz one, and thus gave rise to the branch of set-theoretic topology known as

Selection Principles. Selection principles may be thought as some combinatorial conditions

on the family of open covers of a topological space. Let A and B be families of covers of a

topological space X. Following [10] we say that X has the property
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• ⋃fin(A,B), if for every sequence (un)n∈ωAω there exists a sequence (vn)n∈ω, where each

vn is a finite subset of un, such that {⋃ vn : n ∈ ω} ∈ B;
• Sfin(A,B), if for every sequence (un)n∈ω ∈ Aω there exists a sequence (vn)n∈ω where

each vn is a finite subset of un such that
⋃{vn : n ∈ ω} ∈ B.

Throughout the paper, A and B run over the families O, Ω, and Γ of all open (ω-, γ-) covers
of X. Given a family u = {Ui : i ∈ I} of subsets of a set X, we define the map µu : X → P(I)
letting µu(x) = {i ∈ I : x ∈ Ui} (µu is the Marczewski �dictionary� map introduced in [9]). In

what follows, I ∈ {ω, w2}. Depending on the properties of µu(X) a family u = {Un : n ∈ ω}
is defined to be

• an ω-cover [4], if the family µu(X) is centered, i.e. for every finite subset K of X the

intersection
⋂

x∈K µu(x) is infinite;

• a γ-cover of X [4], if for every x ∈ X the set µu(x) is cofinite in ω, i.e. ω \ µu(x) is

finite.

We shall consider here four selection principles:
⋃

fin(O, Γ),
⋃

fin(O, Ω),
⋃

fin(O,O) and

Sfin(Γ, Ω). Let us note that
⋃

fin(O, Γ) is nothing else but the Hurewicz property. Concerning⋃
fin(O,O), it is the classical Menger covering property introduced in [8]. We are in a position

now to formulate the

Scheepers diagram problem.

(1) Does the property
⋃

fin(O, Ω) imply Sfin(Γ, Ω)?

(2) And if not, then does
⋃

fin(O, Γ) imply Sfin(Γ, Ω)?

One may ask the same question as in Problem 1 for the properties
⋃

fin(O, Ω) and⋃
fin(O,O).

Problem 2. Can a Borel non-σ-compact group be generated by its subspace with the

property
⋃

fin(O, Ω)?

Problem 3. Can a Borel non-σ-compact group be generated by its subspace with the

property
⋃

fin(O,O)?

The following theorem, which is the main result of this paper, is a reformulation of

a Scheepers diagram problem in algebraic manner.

Theorem 4. The property
⋃

fin(O, Γ) (resp.
⋃

fin(O, Ω),
⋃

fin(O,O)) implies Sfin(Γ, Ω) if and
only if the group G is not generated by its subspace with the property

⋃
fin(O, Γ) (resp.⋃

fin(O, Ω),
⋃

fin(O,O)).
In other words, the affirmative answer to the Scheepers diagram problem (1) (resp. (2))

is equivalent to the negative answer onto Problem 2 (resp. Problem 1) in the case of the

group G.

The group G is a rather simple object from the point of view of the Descriptive Set Theory.

For every j ∈ ω its projection onto {0, 1}ω×{j} is homeomorphic to Q being a countable metri-

zable space without isolated points. From the above it follows that G is a countable intersecti-

on of Fσ � subsets of {0, 1}ω2
(i.e. it is an Fσδ- or, equivalently, Π0

3-subset) homeomorphic to

Qω. Therefore, it is a nowhere locally-compact, and it fails to have the property
⋃

fin(O,O).
For more simple groups from the point of view of Borel hierarchy Problem 1 can be answered

in the negative.
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Proposition 1. No Borel non-σ-compact group B can be generated by its subspace X with

the property
⋃

fin(O, Γ) provided B is an Fσ- or Gδ-subspace of a complete metric space.

Recall that a map f from a topological space X to a topological space Y is Borel, if

for every Borel subset B of Y its preimage f−1(B) is a Borel subset of X. The following

statement answers Problem 3 in the affirmative under the Continuum Hypothesis. On the

other hand, it is known that the properties
⋃

fin(O, Ω) and
⋃

fin(O,O) coincide in some

models of ZFC, see [17]. Therefore the negative answer to Problem 2 would imply that the

negative answer onto Problem 3 is consistent as well.

Proposition 2. Under the Continuum Hypothesis, a metrizable separable group B can be

generated by its subspace X with the property
⋃

fin(O,O) provided it is a Borel homomor-

phic image of a nonmeager metrizable separable group. In particular, G is generated by its

subspace with the property
⋃

fin(O,O) under CH.

Remark. None of the known methods of contruction of spaces with the property
⋃

fin(O, Γ)
can give a subspace of a Borel non-σ-compact group generating it. All finite powers of

spaces with the property
⋃

fin(O, Γ) constructed in [6, Theorem 5.1], [15, Theorem 5.1], and

[2, Theorem 10(1)] have the property
⋃

fin(O,O) or even
⋃

fin(O, Γ), and hence so is any

group they generate. But every Borel (even analytic) space with the property
⋃

fin(O,O) is
σ-compact, see [1]. While the Sierpinski sets S considered in [6] and [11] have the following

property: for every Borel subset B containing S there exists a σ-compact L such that S ⊂
L ⊂ B, see [3].

Concerning the property
⋃

fin(O, Ω), all known examples (excepting the Sierpinski sets)

have the property
⋃

fin(O,O) in all finite powers, and hence cannot generate non-σ-compact

Borel group. 2

Proofs. In what follows, A ⊂∗ B standardly means that A\B is finite. In our proofs we shall

exploit set-valued maps. By a set-valued map Φ from a set X into a set Y we understand

a map from X into P(Y ) and write Φ : X ⇒ Y (here P(Y ) denotes the set of all subsets

of Y ). For a subset A of X we put Φ(A) =
⋃

x∈A Φ(x) ⊂ Y. The set-valued map Φ between

topological spaces X and Y is said to be

• compact-valued, if Φ(x) is compact for every x ∈ X;

• upper semicontinuous, if for every open subset V of Y the set Φ−1
⊂ (V ) = {x ∈ X :

Φ(x) ⊂ V } is open in X.

For a set X we can identify P(X) with the compact space {0, 1}X via the map X ⊃ A 7→
χA ∈ {0, 1}X assigning to a subset of X its characteristic function. A family A of subsets

of a set X is called upward closed, for every A ∈ A and B ⊃ A we have B ∈ A. For a

set A ⊂ X we let ↑ A = {B ⊂ X : A ⊂ B}. The following lemma is a more convenient

reformulation of Theorem 4.

Lemma 1. Let P be a topological property preserved by images under upper semicontinuous

compact-valued maps. Then the following conditions are equivalent:

(1) The property P implies Sfin(Γ, Ω);

(2) for every (upward-closed) F ⊂ P(ω2) with the property P such that ω × {j} ⊂∗ F for

every F ∈ F and j ∈ ω, there exists a sequence (Kj)j∈ω of finite subsets of ω such that

each element of the smallest filter containing F meets
⋃

n∈ω Kj × {j}.



222 L. S. ZDOMSKYY

Proof. (1) ⇒ (2). It simply follows from the definition of the property Sfin(Γ, Ω) and the

observation that {{F ∈ F : F 3 (i, j)} : i ∈ ω} is an open γ-cover of F for every j ∈ ω.
(2) ⇒ (1). Let X be a topological space with the property P and (uj)j∈ω be a sequence of

open γ-covers of X. Let us write uj in the form uj = {Ui,j : i ∈ ω}. Set u = {Ui,j : i, j ∈ ω}.
Consider the set-valued map Φ : X ⇒ P(ω2), Φ : x 7→↑ µu(x). Applying Lemma 2 of [17],

we conclude that Φ is compact-valued and upper semicontinuous, and hence F := Φ(X) has
the property P. The definition of Φ implies that F is upward closed. Since uj is a γ-cover
of X for every j ∈ ω, ω × {j} ⊂∗ F for each F ∈ F . From the above it follows that there

exists a sequence (Kj)j∈ω of finite subsets of ω such that each element of the smallest filter

U containing F meets some Kj × {j}. Then the family {Ui,j : i ∈ Kj} is easily seen to be

an ω-cover of X, which finishes our proof.

The properties
⋃

fin(O,O),
⋃

fin(O, Ω), and
⋃

fin(O, Γ) satisfy the conditions of the above

lemma by [17, Lemma 1].

Proof of Theorem 4. Let P be any of the properties
⋃

fin(O,O),
⋃

fin(O, Ω), and
⋃

fin(O, Γ).
Assuming that P implies Sfin(Γ, Ω), fix a subspace X of G with the property P. Let us denote
by ϕ the map assigning to any subset A of ω2 its characteristic function χA ∈ {0, 1}ω2

. Then

the space F = {ω2 \ A : A ∈ ϕ−1(X)} has the property P being homeomorphic to X, and

ω × {j} ⊂∗ F for every F ∈ F by our choice of G ⊃ X. Applying Lemma 1, we conclude

that there exists a sequence (Kj)j∈ω of finite subsets of ω such that
⋃

j∈ω Kj × {j} meets

all elements of the smallest filter containing F . Now, a direct verification shows that the

charateristic function χ∪j∈ωKj×{j} cannot be represented as a sum of elements of X, which

means that X does not generate G.
Next, let us assume that P does not imply Sfin(Γ, Ω) and apply Lemma 1 to find an upward

closed family F of subsets of ω2 such that for every sequence (Kj)j∈ω of finite subsets of ω
there exists a finite subset A of F such that(⋃

j∈ω

Kj × {j}
)

∩
⋂

A = ∅.

Set X = {χω2\F : F ∈ F}. Then X has the property P being homeomorphic to F . We claim

that X is a set of generators of G. Indeed, let us fix any g ∈ G and set Kj = {i ∈ ω : gi,j = 1}.
Then each Kj is finite by the definition of G. For the sequence (Kj)j∈ω find a finite subset

A = {Ai : i ≤ n} of F as above. Using the upward closedness of F , define inductively

a finite subset B = {Bi : i ≤ n} of F letting B0 = A0 and Bk = Ak ∪ ⋃l<k (ω2 \ Bl) for

all 0 < k ≤ n. It is easy to prove by induction over k ≤ n that (ω2 \ Bl) ∩ (ω2 \ Bk) = ∅

for all l < k and
⋂

l≤k Bk =
⋂

l≤k Ak, consequently
⋂B =

⋂A ⊂
(
ω2 \⋃j∈ω Kj × {j}

)
.

Let Ck = Bk ∪
(
ω2 \⋃j∈ω Kj × {j}

)
, k ≤ n. Then C = {Ck : k ≤ n} has the following

properties:

(i)
⋃ C = ω2 \⋃j∈ω Kj × {j};

(ii) (ω2 \ C) ∩ (ω2 \ D) = ∅ for all C, D ∈ C;
(iii) C ⊂ F .

It suffices to note that {χω2\Ck
: k ≤ n} ⊂ X by (iii) and χω2\C0

+ · · · + χω2\Cn
=

χ∪j∈ωKj×{j} = g, which finishes our proof.
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Proof of Proposition 1. First assume that B is a non-σ-compact Gδ-subspace of a complete

metric space and fix a subspace X of B with the property
⋃

fin(O, Γ). The same argument

as in [6, Theorem 5.7] gives a σ-compact subset L of B such that X ⊂ L. Since B is not

σ-compact, it is not generated by L, and hence by X as well.

Now consider a non-σ-compact Borel group B which is an Fσ-subset of a complete metric

space Y and write B in the form
⋃

n∈ω Bn, where each Bn is closed in Y . Let X be a

subspace of B with the property
⋃

fin(O, Γ). Since the property
⋃

fin(O, Γ) is preserved by

closed subspaces, X ∩ Bn has the property
⋃

fin(O, Γ) for all n ∈ ω. In addition, each Bn is

a Gδ-subspace of Y being closed. From the above it follows that there exists a σ-compact

Ln such that X ∩ Bn ⊂ Ln ⊂ Bn, and consequently X ⊂ ⋃n∈ω Ln ⊂ B. It suffices to apply

the same argument as in the first part of the proof.

Proof of Proposition 2. Let C be a nonmeager metrizable separable topological group and

f : C → B be a surjective Borel homomorphism. Almost literal repetition of the proof of

Lemma 29 from [11] gives us a subspace Z of C such that Z generates C and each Borel

image of Z has the property
⋃

fin(O,O), see [11, Corollary 30]. It suffices to note that B is

generated by f(Z).
Next, let us show that under CH the group G is generated by its subspace with the

property
⋃

fin(O,O). Indeed, let us denote by τ the Tychonoff product topology on {0, 1}ω2
=∏

j∈ω{0, 1}ω×{j}, where {0, 1}ω×{j} is considered with the discrete topology for each j ∈ ω.
Then τ |G is stronger than the natural topology on G, and (G, τ |G) is a completely metrizable

topological group being a countable product of countable discrete groups.
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